878 resultados para dinoflagellates
Resumo:
Palynological data from offshore Costa Rica, allow us to investigate the relationship between dinoflagellate cyst assemblages and changes in regional oceanic primary productivity. From Miocene to Pleistocene, productivity at ODP Site 1039 was influenced by tectonic drift, as Site 1039 approached the continent, from the Equator to its current position at ~10°N. In addition, dinoflagellate abundance is modulated by regional productivity events, which modified primary productivity, as also indicated by available data on calcareous nannofossils, diatoms, TOC, and CaCO3 content. Five palynomorph intervals are defined. The early-late Miocene one, dominated by Batiacasphaera, represents relatively stable, productive oceanic conditions before the closure of the Indonesian and Panama Seaways. The late Miocene decrease in palynomorph recovery is related to the Carbonate Crash Event. The high abundance and diversity of the assemblages at the end of the late Miocene to early Pliocene indicate increased productivity related to the Global Biogenic Bloom, and a change in dominance from Batiacasphaera to Impagidinium to Nematosphaeropsis. The low abundance of the late Pliocene interval is related to El Niño-like conditions, and there is another change related to the disappearance of Batiacasphaera and dominance of Impagidinium, Nematosphaeropsis, and Operculodinium. The abundant Pleistocene assemblages represent increased marine productivity, and a high influx of continental palynomorphs and bissacate pollen, associated with the proximity of the Costa Rica Dome. Pleistocene dinoflagellates are characterized by Spiniferites and Selenopemphix, together with rare Impagidinium and Nematosphaeropsis.
Resumo:
The evolution of calcareous dinoflagellate communities has been investigated for the latest Cretaceous to earliest Neogene interval of the mid-latitude South Atlantic. In doing so, the response of calcareous dinoflagellates to Cenozoic climatic change has been addressed for the first time. Trends in species composition and distribution patterns of wall types indicate significant changes which correlate with major palaeoenvironmental modifications. A first major shift concerning the relative abundance of species and wall types occurred across the Cretaceous-Tertiary boundary. The associations remained stable during the entire Paleocene and Eocene. Only in the late Eocene did a dramatic decrease in temperature cause a slight diversification. A second major shift in the abundance patterns occurred across the Eocene-Oligocene boundary. The early Miocene warming is possibly reflected in the distinct increase in relative abundance of one species. The assemblages of calcareous dinoflagellates evidently react to major climatic changes during the Cenozoic. These poorly investigated organisms may thus provide an important contribution to the understanding of earth's palaeoclimatic evolution.
Resumo:
The effects of dissolved inorganic carbon (DIC) on the growth of 3 red-tide dinoflagellates (Ceratium lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied at pH 8.0 and at higher pH levels, depending upon the pH tolerance of the individual species. The higher pH levels chosen for experiments were 8.55 for C. lineatum and 9.2 for the other 2 species. At pH 8.0, which approximates the pH found in the open sea, the maximum growth in all species was maintained until the total DIC concentration was reduced below ~0.4 and 0.2 mM for C. lineatum and the other 2 species, respectively. Growth compensation points (concentration of inorganic carbon needed for maintenance of cells) were reached at ~0.18 and 0.05 mM DIC for C. lineatum and the other 2 species, respectively. At higher pH levels, maximum growth rates were lower compared to growth at pH 8, even at very high DIC concentrations, indicating a direct pH effect on growth. Moreover, the concentration of bio-available inorganic carbon (CO2 + HCO3-) required for maintenance as well as the half-saturation constants were increased considerably at high pH compared to pH 8.0. Experiments with pH-drift were carried out at initial concentrations of 2.4 and 1.2 mM DIC to test whether pH or DIC was the main limiting factor at a natural range of DIC. Independent of the initial DIC concentrations, growth rates were similar in both incubations until pH had increased considerably. The results of this study demonstrated that growth of the 3 species was mainly limited by pH, while inorganic carbon limitation played a minor role only at very high pH levels and low initial DIC concentrations.