918 resultados para core processes


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed assessment of the respective roles of production, export, and subsequent preservation of organic carbon (Corg) in the eastern Mediterranean (EMED) sediments during the formation of sapropels remains elusive. Here we present new micropaleontological results for both surface samples taken at several locations in the EMED and last interglacial sapropel S5 from core LC21 in the southeastern Aegean Sea. A strong exponential anticorrelation between relative abundances of the lower photic zone coccolithophore Florisphaera profundain the surface sediments and modern concentrations of chlorophyll a (Chl-a) at the sea surface suggests thatF. profunda percentages can be used to track past productivity changes in the EMED. Prior to S5 deposition, an abrupt and large increase of F. profunda percentages in LC21 coincided (within the multidecadal resolution of the records) with the marked freshening of EMED surface waters. This suggests a strong coupling between freshwater-bound surface to intermediate water (density) stratification and enhanced upward advection of nutrients to the base of the photic zone, fuelling a productive deep chlorophyll maximum (DCM) underneath a nutrient-starved surface layer. Our findings imply that (at least) at the onset of sapropel formation physical and biogeochemical processes likely operated in tandem, enabling high Corg accumulation at the seafloor.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Submarine brine lakes feature sharp and persistent concentration gradients between seawater and brine, though these should be smoothed out by free diffusion in open ocean settings. The anoxic Urania basin of the Eastern Mediterranean contains an ultra sulfidic, hypersaline brine of Messinian origin above a thick layer of suspended sediments. With a dual modeling approach we reconstruct its contemporary stratification by geochemical solute transport fundamentals, and show that thermal convection is required to maintain mixing in the brine and mud layer. The origin of the Urania basin stratification was dated to 1650 years before present, which may be linked to a major earthquake in the region. The persistence of the chemoclines may be key to the development of diverse and specialized microbial communities. Ongoing thermal convection in the fluid mud layer may have important, yet unresolved consequences for sedimentological and geochemical processes, also in similar environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ~100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ~2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador: