144 resultados para cooperative content distribution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variable climatic and oceanographic conditions characterized the last interglacial at high northern latitudes, probably related to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC). The magnitudes of these changes are comparable to the Holocene variability, and were thus significantly subdued compared to glacial climate changes. A thermal optimum occurred during the early part of the interglacial, followed by a period of reduced Atlantic inflow to the northernmost Nordic Seas. Subsequently, a new period with increased strength of the AMOC occurred. Significant amounts of Ice-Rafted Debris (IRD) were deposited in the northernmost Nordic Seas before any major change of the global ice volume. This implies an early onset of local ice sheet growth, probably the result of enhanced inflow of Atlantic water to the northernmost Nordic Seas contemporary with a Northern Hemisphere summer insolation minimum. Contrasting sea-land conditions provided large moisture fluxes towards land, giving rise to rapid, early glacial growth. Throughout the glacial part of Marine Isotope Stage (MIS) 5, millennial-scale cold events occurred along the axis of the warm water transport, from the subtropics all the way to the northernmost Nordic Seas. Correlation of IRD events from sites in the Fram Strait, on the Voring Plateau, and in the North Atlantic provides evidence that the major Northern Hemisphere ice sheets at times responded coherently to the same forcing. The widespread distribution of these events highlights the importance of the oceanic influence on the regional climate system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boron contents and boron isotopic compositions were determined for the uppermost 1.3 km section of typical 6.2 Ma oceanic crust from DSDP/ODP Hole 504B, Costa Rica Rift, Galapagos Spreading Center. Both the boron content and the d11B value in the oceanic crust are controlled by two types of alteration: 1. (1) low-temperature alteration (0 to 60°C; Zones I and II) and 2. (2) high-temperature hydrothermal alteration (200 to 400°C; Zones III and IV). Basalts subjected to the low-temperature alteration are characterized by their relatively high boron contents (0.69 to 19.3 ppm) and high d11B values (+2.2 to +10.6?), indicating uptake of boron into secondary phases in equilibrium with seawater or evolved seawater. Hydrothermally altered basalts contain less abundant boron (0.17 to 0.52 ppm) and relatively constant d11B values (?0.1 to +1.0?). Although basalts from the upper part of these hydrothermal zones (<1300 mbsf) show equilibrated boron content and d11B value with aqueous fluid, effective leaching of boron from basalt is predominant in the lower part (>1300 mbsf). Original boron content and d11B value of the Hole 504B MORB were 0.35 ppm and +0.2?, respectively. The present data provide fundamental information in understanding of the distribution of boron and boron isotopes in the oceanic crust.