77 resultados para Water-free Microemulsions


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During summer seasons (from 2012 to 2015) high resolution observation were performed in the Civitavecchia coastal area (Northern Tyrrhenian sea, west coast). All sampling was carried out from a small boat (5m rigid inflatable) starting in the early morning typically around 06:00 a.m. , and lasting from 2 to 8 h, depending on the weather conditions. The purposes of the experiment was to observe the variations of both the coastal circulation and the water column in response to rotation of 180 ° in the wind direction. During surveys both current measurements and yo-yo time series were performed. Current data were acquired using an ADCP SonTeck (500 Khz, sampling interval from 20sec to 60 sec, average interval 50% sampling, cell thickness 1 meter) and the yo-yo time series employing a small instrument package (CTD). The CTD contained an Idronaut 316 Plus and a SeaPoint fluorometer. The sampling rate for the CTD was 10Hz, profiling with the CTD was done by allowing the instrument package to free-fall, at an average descent rate of 1 m/s. During the summer 2012, the sampling plan consisted in four stations spaced a quarter of a mile (St. 1 - 10 m; St. 2 - 20 m; St. 3 - 30 m; and St. 4 - 40 m), in which yo-yo time series were performed with an interval of 20 min. In order to study fluorescence of Chlorophyll a pathes distribution in coastal zone. Breeze induced circulation was the goal of the following summers surveys, in these current measurements and yo-yo time series were performed moored at a depth of 40 m. Offshore station (St. 1 -40m) has been chosen to perform measurement, basis of previously observations (2012 sampling surveys). It was decided as wind driven circulation and mixing phenomena are less influenced by seabed than the other stations. Acquired data have been processed by NEMO SeaDataNet software.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine invertebrates with open circulatory system establish low and constant oxygen partial pressure (Po2) around their tissues. We hypothesized that as a first step towards maintenance of low haemolymph and tissue oxygenation, the Po2 in molluscan mantle cavity water should be lowered against normoxic (21 kPa) seawater Po2, but balanced high enough to meet the energetic requirements in a given species. We recorded Po2 in mantle cavity water of five molluscan species with different lifestyles, two pectinids (Aequipecten opercularis, Pecten maximus), two mud clams (Arctica islandica, Mya arenaria), and a limpet (Patella vulgata). All species maintain mantle cavity water oxygenation below normoxic Po2. Average mantle cavity water Po2 correlates positively with standard metabolic rate (SMR): highest in scallops and lowest in mud clams. Scallops show typical Po2 frequency distribution, with peaks between 3 and 10 kPa, whereas mud clams and limpets maintain mantle water Po2 mostly <5 kPa. Only A. islandica and P. vulgata display distinguishable temporal patterns in Po2 time series. Adjustment of mantle cavity Po2 to lower than ambient levels through controlled pumping prevents high oxygen gradients between bivalve tissues and surrounding fluid, limiting oxygen flux across the body surface. The patterns of Po2 in mantle cavity water correspond to molluscan ecotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean d18O of -29.1 per mil); this, together with low d-excess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island ice-thrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial-Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On DSDP Leg 84, drilling was conducted at three gas-hydrate-bearing sites on the Middle America Trench slope off Costa Rica (Site 565) and off Guatemala (Sites 568 and 570). At Site 569, on the mid-slope off Guatemala, hydrates may be present, according to the seismic profile (GUA-13), although the pore-water composition does not provide clear evidence. Sites 566 and 567, on the lower Guatemala Trench slope, appear to be free of hydrates, except in fractures of serpentinite at the bottom of Hole 566. Hydrate-bearing Sites 565, 568, and 570 show the effects of hydrate decomposition on pore-water chemistry that have been established during previous drilling at Sites 496 and 497 on the Guatemala Trench slope. These include a chlorinity decrease and d18O increase downsection. The new results, however, reveal more complex relationships between the chlorinity decrease and d18O increase than previously recognized. At Site 565, d18O values decrease in the middle section of the hole, whereas chlorinity continues to decrease from the top to near the bottom of the hole. Early diagenetic alteration of volcanic glass is suggested as a mechanism for the unexpected minimum in the O-isotope curve. Multiple fractionation by the pore-water/hydrate system is required to explain d18O-values greater than 2.7 per mil at the bottom of Hole 568, because with a fractionation factor of alpha = 1.0027, this is the maximum figure a single-stage fractionation could produce. In situ water samples from hydrate zones in most cases failed to display the elevated salinities expected for the residual pore waters not involved in hydrate formation. This is probably because the in situ sampling device still allows a systematic pressure drop sufficient to trigger hydrate decomposition in the immediate vicinity of the sample port.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air-sea gas exchange plays a key role in the cycling of greenhouse and other biogeochemically important gases. Although air-sea gas transfer is expected to change as a consequence of the rapid decline in summer Arctic sea ice cover, little is known about the effect of sea ice cover on gas exchange fluxes, especially in the marginal ice zone. During the Polarstern expedition ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean, we compared 222Rn/226Ra ratios in the upper 50 m of 14 ice-covered and 4 ice-free stations. At three of the ice-free stations, we find 222Rn-based gas transfer coefficients in good agreement with expectation based on published relationships between gas transfer and wind speed over open water when accounting for wind history from wind reanalysis data. We hypothesize that the low gas transfer rate at the fourth station results from reduced fetch due to the proximity of the ice edge, or lateral exchange across the front at the ice edge by restratification. No significant radon deficit could be observed at the ice-covered stations. At these stations, the average gas transfer velocity was less than 0.1 m/d (97.5% confidence), compared to 0.5-2.2 m/d expected for open water. Our results show that air-sea gas exchange in an ice-covered ocean is reduced by at least an order of magnitude compared to open water. In contrast to previous studies, we show that in partially ice-covered regions, gas exchange is lower than expected based on a linear scaling to percent ice cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sm-Nd concentrations and Nd isotopes were investigated in the fine fraction of two Labrador Sea cores to reconstruct the deep circulation patterns through changes in sedimentary supply since the last glacial stage. Three sources are involved: the North American Shield, Palaeozoic rocks from northeastern Greenland, and mid-Atlantic volcanism. The variable input of these sources provides constraints on the relative sedimentary supply, in conjunction with inception of deep currents. During the last glacial stage a persistent but sluggish current occurred inside the Labrador Basin. An increasing discharge of volcanic material driven by the North East Atlantic Deep Water is documented since 14.3 kyr, signaling the setup of a modern-like deep circulation pattern throughout the Labrador, Irminger, and Iceland basins. During the last deglacial stage the isotopic record was punctually influenced by erosion processes related mainly to ice-sheet instabilities, especially 11.4, 10.2, and 9.2 kyr ago.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient addition experiments were performed during the austral summer in the Amundsen Sea (Southern Ocean) to investigate the availability of organically bound iron (Fe) to the phytoplankton communities, as well as assess their response to Fe amendment. Changes in autotrophic biomass, pigment concentration, maximum photochemical efficiency of photosystem II, and nutrient concentration were recorded in response to the addition of dissolved free Fe (DFe) and Fe bound to different model ligands. Analysis of pigment concentrations indicated that the autotrophic community was dominated by the prymnesiophyte Phaeocystis antarctica throughout most of the Amundsen Sea, although diatoms dominated in two experiments conducted in the marginal ice zone. Few significant differences in bulk community biomass (particulate organic carbon, nitrogen, and chlorophyll a) were observed, relative to the controls, in treatments with Fe added alone or bound to the ligand phytic acid. In contrast, when Fe was bound to the ligand desferrioxamine B (DFB), decreases in the bulk biomass indices were observed. The concentration of the diatom accessory pigment fucoxanthin showed little response to Fe additions, while the concentration of the P. antarctica-specific pigment, 19'-hexanoyloxyfucoxanthin (19'-hex), decreased when Fe was added alone or bound to the model ligands. Lastly, differences in the nitrate:phosphate (NO3- :PO4**3-) utilization ratio were observed between the Fe-amended treatments, with Fe bound to DFB resulting in the lowest NO3- :PO4**3- uptake ratios (~ 10) and the remaining Fe treatments having higher NO3- :PO4**3- uptake ratios (~ 17). The data are discussed with respect to glacial inputs of Fe in the Amundsen Sea and the bioavailability of Fe. We suggest that the previously observed high NO3- :PO4**3- utilization ratio of P. antarctica is a consequence of its production of dissolved organic matter that acts as ligands and increases the bioavailability of Fe, thereby stimulating the uptake of NO3-.