325 resultados para Water well drilling
Resumo:
High biogenic sedimentation rates in the late Neogene at DSDP Site 590 (1293 m) provide an exceptional opportunity to evaluate late Neogene (late Miocene to latest Pliocene) paleoceanography in waters transitional between temperate and warm-subtropical water masses. Oxygen and carbon isotope analyses and quantitative planktonic foraminiferal data have been used to interpret the late Neogene paleoceanographic evolution of this site. Faunal and isotopic data from Site 590 show a progression of paleoceanographic events between 6.7 and 4.3 Ma, during the latest Miocene and early Pliocene. First, a permanent depletion in both planktonic and benthic foraminiferal d13C, between 6.7 and 6.2 Ma, can be correlated to the globally recognized late Miocene carbon isotope shift. Second, a 0.5 per mil enrichment in benthic foraminiferal d18O between 5.6 and 4.7 Ma in the latest Miocene to early Pliocene corresponds to the latest Miocene oxygen isotopic enrichment at Site 284, located in temperate waters south of Site 590. This enrichment in d18O coincides with a time of cool surface waters, as is suggested by high frequencies of Neogloboquadrina pachyderma and low frequencies of the warmer-water planktonic foraminifers, as well as by an enrichment in planktonic foraminiferal d18O relative to the earlier Miocene. By 4.6 Ma, benthic foraminiferal d18O values become depleted and remain fairly stable until about 3.8 Ma. The early Pliocene (~4.3 to 3.2 Ma) is marked by a significant increase in biogenic sedimentation rates (37.7 to 83.3 m/m.y.). During this time, heaviest values in planktonic foraminiferal d18O are associated with a decrease in the gradient between surface and intermediate-water d13C and d18O, a 1.0 per mil depletion in the d13C of two species of planktonic foraminifers, and a mixture of warm and cool planktonic foraminiferal elements. These data suggest that localized upwelling at the Subtropical Divergence produced an increase in surface-water productivity during the early Pliocene. A two-step enrichment in benthic foraminiferal d18O occurs in the late Pliocene sequence at Site 590. A 0.3 per mil average enrichment at about 3.6 Ma is followed by a 0.5 per mil enrichment at 2.7 Ma. These two events can be correlated with the two-step isotopic enrichment associated with late Pliocene climatic instability and the initiation of Northern Hemisphere glaciation.
Resumo:
Site 996 is located above the Blake Diapir where numerous indications of vertical fluid migration and the presence of hydrate existed prior to Ocean Drilling Program (ODP) Leg 164. Direct sampling of hydrates and visual observations of hydrate-filled veins that could be traced 30-40 cm along cores suggest a connection between fluid migration and hydrate formation. The composition of pore water squeezed from sediment cores showed large variations due to melting of hydrate during core recovery and influence of saline water from the evaporitic diapir below. Analysis of water released during hydrate decomposition experiments showed that the recovered hydrates contained significant amounts of pore water. Solutions of the transport equations for deuterium (d2H) and chloride (Cl-) were used to determine maximum (d2H) and minimum (Cl-) in situ concentrations of these species. Minimum in situ concentrations of hydrate were estimated by combining these results with Cl- and d2H values measured on hydrate meltwaters and pore waters obtained by squeezing of sediments, by the means of a method based on analysis of distances in the two-dimensional Cl- d2H space. The computed Cl- and d2H distribution indicates that the minimum hydrate amount solutions are representative of the actual hydrate amount. The highest and mean hydrate concentrations estimates from our model are 31% and 10% of the pore space, respectively. These concentrations agree well with visual core observations, supporting the validity of the model assumptions. The minimum in situ Cl- concentrations were used to constrain the rates of upward fluid migration. Simulation of all available data gave a mean flow rate of 0.35 m/k.y. (range: 0.125-0.5 m/k.y.).
Resumo:
Interstitial water data obtained during Leg 60 show complex gradients at Site 453 in a sediment pond on the west side of the Mariana Trough. Concentrations of Ca, Mg, Sr, as well as of K and Li, suggest that slightly altered sea water penetrates below the sediments, most likely through brecciated igneous and metamorphic rocks, mainly gabbros, lying at the base of the pond. Interstitial water concentration gradients suggest that reactions involving igneous matter lead to increases in calcium and strontium in the pore fluids and to decreases in magnesium. Upward advection of water through the sediments does not appear to occur, so that the advected sea water most likely penetrates deeper into the breccias, perhaps leading to further hydrothermal activity elsewhere in this area. Interstitial water gradients at Sites 458 (conservative) and 459 suggest that reactions in the sediments and underlying basalts are responsible for increases in dissolved calcium and decreases in magnesium and potassium.
Resumo:
This dataset contains the collection of available published paired Uk'37 and Tex86 records spanning multi-millennial to multi-million year time scales, as well as a collection of Mg/Ca-derived temperatures measured in parallel on surface and subsurface dwelling foraminifera, both used in the analyses of Ho and Laepple, Nature Geoscience 2016. As the signal-to-noise ratios of proxy-derived Holocene temperatures are relatively low, we selected records that contain at least the last deglaciation (oldest sample >18kyr BP).
Resumo:
The Integrated Ocean Drilling Program Expedition 308 (IODP308) drilled normal-pressured sediments from the Brazos-Trinity Basin IV and over-pressured sediments from the Ursa Basin on the northern slope of the Gulf of Mexico. The interstitial water samples from the normal-pressured basin show B concentrations and B isotopic compositions ranging from 255 to 631 µM (0.6 to 1.5 times of seawater value) and from +29.1 to +42.7 per mil (relative to NIST SRM 951), respectively. A wider range is observed both for B concentrations (292 to 865 µM, 0.7 to 2.1 times of seawater value) and d11B values (+25.5 to +43.2 per mil) of the interstitial water in the over-pressured basin. The down-core distribution of B concentrations and d11B values in the interstitial waters are sensitive tracers for assessing various processes occurring in the sediment column, including boron adsorption/desorption reactions involving clay minerals and organic matter in sediments as well as fluid migration and mixing in certain horizons and in the sediment column. In the normal-pressured basin adsorption/desorption reactions in shallow sediments play the major role in controlling the B content and B isotopic composition of the interstitial water. In contrast, multiple processes affect the B content and d11B of the interstitial water in the over-pressured Ursa Basin. There, the stratigraphic level of the maxima of B and d11B correspond to seismic reflectors. The intruded fluids along the seismic reflector boundary from high to low-topography mix with local interstitial water. Fluid flow is inferred in the Blue Unit (a coarse sandstone layer, connecting the high- to low-pressured region) from the freshening of interstitial water in Ursa Basin Site U1322, and upward flow by the overpressure expels fluid from the overburden above the Blue Unit.