100 resultados para WINTER MONSOON


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations of total organic carbon (TOC) were determined on samples collected during six cruises in the northern Arabian Sea during the 1995 US JGOFS Arabian Sea Process Study. Total organic carbon concentrations and integrated stocks in the upper ocean varied both spatially and seasonally. Highest mixed-layer TOC concentrations (80-100 µM C) were observed near the coast when upwelling was not active, while upwelling tended to reduce local concentrations. In the open ocean, highest mixed-layer TOC concentrations (80-95 µM C) developed in winter (period of the NE Monsoon) and remained through mid summer (early to mid-SW Monsoon). Lowest open ocean mixed-layer concentrations (65-75 µM C) occurred late in the summer (late SW Monsoon) and during the Fall Intermonsoon period. The changes in TOC concentrations resulted in seasonal variations in mean TOC stocks (upper 150 m) of 1.5-2 mole C/m**2, with the lowest stocks found late in the summer during the SW Monsoon-Fall Intermonsoon transition. The seasonal accumulation of TOC north of 15°N was 31-41 x 10**12 g C, mostly taking place over the period of the NE Monsoon, and equivalent to 6-8% of annual primary production estimated for that region in the mid-1970s. A net TOC production rate of 12 mmole C/m**2/d over the period of the NE Monsoon represented ~80% of net community production. Net TOC production was nil during the SW Monsoon, so vertical export would have dominated the export terms over that period. Total organic carbon concentrations varied in vertical profiles with the vertical layering of the water masses, with the Persian Gulf Water TOC concentrations showing a clear signal. Deep water (>2000 m) TOC concentrations were uniform across the basin and over the period of the cruises, averaging 42.3±1.4 µM C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palynological investigation of a 410 cm long core section from Tso Kar (33°10'N, 78°E, 4527 m a.s.l.), an alpine lake situated in the arid Ladakh area of NW India at the limit of the present-day Indian summer monsoon, was performed in order to reconstruct post-glacial regional vegetation and climate dynamics. The area was covered with alpine desert vegetation from ca. 15.2 to 14 kyr BP (1 kyr=1000 cal. years), reflecting dry and cold conditions. High influx values of long-distance transported Pinus sylvestris type pollen suggest prevailing air flow from the west and northwest. The spread of alpine meadow communities and local aquatic vegetation is a weak sign of climate amelioration after ca. 14 kyr BP. Pollen data (e.g. influx values of Pinus roxburghii type and Quercus) suggest that this was due to a strengthening of the summer monsoon and the reduced activity of westerly winds. The further spread of Artemisia and species-rich meadows occurred in response to improved moisture conditions between ca. 12.9 and 12.5 kyr BP. The subsequent change towards drier desert-steppe vegetation likely indicates more frequent westerly disturbances and associated snowfalls, which favoured the persistence of alpine meadows on edaphically moist sites. The spread of Chenopodiaceae-dominated vegetation associated with an extremely weak monsoon occurred at ca. 12.2-11.8 kyr BP during the Younger Dryas interstadial. A major increase in humidity is inferred from the development of Artemisia-dominated steppe and wet alpine meadows with Gentianaceae after the late glacial/early Holocene transition in response to the strengthening of the summer monsoon. Monsoonal influence reached maximum activity in the Tso Kar region between ca. 10.9 and 9.2 kyr BP. The subsequent development of the alpine meadow, steppe and desert-steppe vegetation points to a moderate reduction in the moisture supply, which can be linked to the weaker summer monsoon and the accompanying enhancement of the winter westerly flow from ca. 9.2 to 4.8 kyr BP. The highest water levels of Tso Kar around 8 kyr BP probably reflect combined effect of both monsoonal and westerly influence in the region. An abrupt shift towards aridity in the Tso Kar region occurred after ca. 4.8 kyr BP, as evidenced by an expansion of Chenopodiaceae-dominated desert-steppe. Low pollen influx values registered ca. 2.8-1.3 kyr BP suggest scarce vegetation cover and unfavourable growing conditions likely associated with a further weakening of the Indian Monsoon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ist die Tatsache ungewöhnlicher Temperaturzunahme im Nordpolarraum in den letzten Jahrzehnten durch zahlreiche Publikationen allgemein bekannt, so möchte ich hier auf einige sehr bemerkenswerte, in jüngster Zeit von mir aufgedeckte Erscheinungen und Beziehungen hinweisen. 1. Die Milderung der Wintertemperatur an der W-Küste Grönlands. Bildet man die Wintertemperaturdifferenzen: Godthab minus Jakobshavn, so zeigt sich für die untersuchte Reihe 1876-1939: 2. eine periodische Schwankung mit sehr gut ausgeprägten Maximis um die Mitte der Neunzigerjahre und um 1920, Minima um 1880, 1905 und Ende der 20er Jahre, das besonders abgeschwächt ist; seitdem ist diese Differenz wieder in Zunahme begriffen; es zeigt sich somit auch hier meine an zahlreichen Gebieten von der Äquatorial bis zur Polarzone aufgedeckte 24 jährige Witterungsperiode. 3. Die Abschwächung der Winter-Temperaturdifferenz von Godthaah bis Jakobshavn ist (trotz der relativ nur geringen Entfernung von kaum 600 km) als ungewöhnlich hoch zu betrachten. Um diese Verhältnisse eindrucksvoll darlegen zu können, ist die klare Darlegung durch Tabellen unerläßlich.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of picophytoplankton were carried out in the open Black Sea from February to April 1991 with concomitant blooming of diatoms. During this period cyanobacteria predominated in picoplankton averaging 98.8% of total picophytoplankton abundance and 95% of total picoplankton biomass. In February number of cells reached 1.5x10**9 per liter in the East Black Sea. Picoplankton biomass decreased during the observation period. From February to March biomass varied from 452 to 4918 mg/m**2 (av. 1632 mg/m**2), and from March through April from 4 to 656 mg/m**2 (av. 190 mg/m**2). Vertical distribution of picoplankton was determined by the upper margin of the main pycnocline. The major part of picoplankton biomass occurred in the mixed layer. With appearance of seasonal pycnoclines in the last days of March maximum biomass occurred under the upper mixed layer. No relationship was observed between Nitzschia delicatula bloom and picoplankton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first step for the application of stable isotope analyses of ice wedges for the correct paleoclimatic reconstruction supposes the study of the isotopic composition of modern ice wedges and their relationship with the isotopic composition of modern precipitation. The purpose of this research is to present, to analyze and to discuss new data on isotopic composition (d18O, dD, 3H) of modern ice wedges obtained in the Laptev Sea region in 1998-99. Investigations were carried out at two sites: on Bykovsky Peninsula in 1998 and on Bol'shoy Lyakhovsky Island in 1999 and were based on the combined application of both tritium CH) and stable isotope (d18O, dD) analyses. Tritium analyses of the atmospheric precipitation collected during two field seasons show seasonal variations: high tritium concentration in snow (to a maximum of 207 TU) and low values of tritium concentration (<20 TU) in rain. High tritium concentrations are also observed in the surface water, in suprapermafrost ground waters, and in the upper part of permafrost. High tritium concentrations range between 30-40 TU and 750 TU in the studied modern ice wedges (active ice wedges), which let us believe that they are of modern growth. Such high tritium concentrations in ice wedges can not be associated with old thermonuclear tritium because of the radioactive decay. High tritium concentrations found in the snow cover in 1998/99, in the active layer and in the upper part of permafrost give evidence of modern (probably the last decade) technogenic tritium arrival from the atmosphere on to the Earth surface in the region. The comparison of the isotopic composition (d18O, dD and d-excess) of active ice wedges and modern winter precipitation in both sites shows: 1) the isotopic composition of snow correlates linearly with a slope close to 8.0 and parallel to the GMWL at both sites; 2) the mean isotopic composition of active ice wedges on Bykovsky Peninsula is in good agreement with the mean isotopic composition of modern snow; 3) the isotopic composition of active ice wedges and snow on Bol'shoy Lyakhovsky Island are considerably different. There are low values of d-excess in all studied active ice wedges (mean value is about 4.8 per mil), while in snow, the mean value of d-excess is about 9.5 per mil. Possible reasons for this gap are the following: 1) the modification of the isotopic composition in snow during the spring period; 2) changes in the isotopic composition of ice wedges due to the process of ice sublimation in open frost cracks during the cold period; 3) mixing of snowmelt water with different types of surface water during the spring period; 4) different moisture source regions.