267 resultados para Vegetation and shading


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Question: How do interactions between the physical environment and biotic properties of vegetation influence the formation of small patterned-ground features along the Arctic bioclimate gradient? Location: At 68° to 78°N: six locations along the Dalton Highway in arctic Alaska and three in Canada (Banks Island, Prince Patrick Island and Ellef Ringnes Island). Methods: We analysed floristic and structural vegetation, biomass and abiotic data (soil chemical and physical parameters, the n-factor [a soil thermal index] and spectral information [NDVI, LAI]) on 147 microhabitat releves of zonalpatterned-ground features. Using mapping, table analysis (JUICE) and ordination techniques (NMDS). Results: Table analysis using JUICE and the phi-coefficient to identify diagnostic species revealed clear groups of diagnostic plant taxa in four of the five zonal vegetation complexes. Plant communities and zonal complexes were generally well separated in the NMDS ordination. The Alaska and Canada communities were spatially separated in the ordination because of different glacial histories and location in separate floristic provinces, but there was no single controlling environmental gradient. Vegetation structure, particularly that of bryophytes and total biomass, strongly affected thermal properties of the soils. Patterned-ground complexes with the largest thermal differential between the patterned-ground features and the surrounding vegetation exhibited the clearest patterned-ground morphologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pollen records from perennially frozen sequences provide vegetation and climate reconstruction for the last 48,000 14C years in the central part of Taymyr Peninsula. Open larch forest with Alnus fruticosa and Betula nana grew during the Kargin (Middle Weichselian) Interstade, ca. 48,000-25,000 14C yr B.P. The climate was generally warmer and wetter than today. Open steppe-like communities with Artemisia, Poaceae, Asteraceae, and herb tundralike communities with dwarf Betula and Salix dominated during the Sartan (Late Weichselian) Stade, ca. 24,000-10,300 14C yr B.P. The statistical information method used for climate reconstruction shows that the coldest climate was ca. 20,000-17,000 14C yr B.P. A warming (Allerød Interstade?) with mean July temperature ca. 1.5°C warmer than today occurred ca. 12,000 14C yr B.P. The following cooling with temperatures about 3°-4°C cooler than present and precipitation about 100 mm lower corresponds well with the Younger Dryas Stade. Tundra-steppe vegetation changed to Betula nana-Alnus fruticosa shrub tundra ca. 10,000 14C yr B.P. Larch appeared in the area ca. 9400 14C yr B.P. and disappeared after 2900 14C yr B.P. Cooling events ca. 10,500, 9600, and 8200 14C yr B.P. characterized the first half of the Holocene. A significant warming occurred ca. 8500 14C yr B.P., but the Holocene temperature maximum was at about 6000-4500 14C yr B.P. The vegetation cover approximated modern conditions ca. 2800 14C yr B.P. Late Holocene warming events occurred at ca. 3500, 2000, and 1000 14C yr B.P. A cooling (Little Ice Age?) took place between 500 and 200 14C yr ago.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Physiognomic traits of plant leaves such as size, shape or margin are decisively affected by the prevailing environmental conditions of the plant habitat. On the other hand, if a relationship between environment and leaf physiognomy can be shown to exist, vegetation represents a proxy for environmental conditions. This study investigates the relationship between physiognomic traits of leaves from European hardwood vegetation and environmental parameters in order to create a calibration dataset based on high resolution grid cell data. The leaf data are obtained from synthetic chorologic floras, the environmental data comprise climatic and ecologic data. The high resolution of the data allows for a detailed analysis of the spatial dependencies between the investigated parameters. The comparison of environmental parameters and leaf physiognomic characters reveals a clear correlation between temperature related parameters (e.g. mean annual temperature or ground frost frequency) and the expression of leaf characters (e.g. the type of leaf margin or the base of the lamina). Precipitation related parameters (e.g. mean annual precipitation), however, show no correlation with the leaf physiognomic composition of the vegetation. On the basis of these results, transfer functions for several environmental parameters are calculated from the leaf physiognomic composition of the extant vegetation. In a next step, a cluster analysis is applied to the dataset in order to identify "leaf physiognomic communities". Several of these are distinguished, characterised and subsequently used for vegetation classification. Concerning the leaf physiognomic diversity there are precise differences between each of these "leaf physiognomic classes". There is a clear increase of leaf physiognomic diversity with increasing variability of the environmental parameters: Northern vegetation types are characterised by a more or less homogeneous leaf physiognomic composition whereas southern vegetation types like the Mediterranean vegetation show a considerable higher leaf physiognomic diversity. Finally, the transfer functions are used to estimate palaeo-environmental parameters of three fossil European leaf assemblages from Late Oligocene and Middle Miocene. The results are compared with results obtained from other palaeo-environmental reconstructing methods. The estimates based on a direct linear ordination seem to be the most realistic ones, as they are highly consistent with the Coexistence Approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the sedimentary record of Lake Hancza (northeastern Poland) using a multi-proxy approach, focusing on early to mid-Holocene climatic and environmental changes. AMS 14C dating of terrestrial macrofossils and sedimentation rate estimates from occasional varve thickness measurements were used to establish a chronology. The onset of the Holocene at c. 11600 cal. a BP is marked by the decline of Lateglacial shrub vegetation and a shift from clastic-detrital deposition to an autochthonous sedimentation dominated by biochemical calcite precipitation. Between 10000 and 9000 cal. a BP, a further environmental and climatic improvement is indicated by the spread of deciduous forests, an increase in lake organic matter and a 1.7% rise in the oxygen isotope ratios of both endogenic calcite and ostracod valves. Rising d18O values were probably caused by a combination of hydrological and climatic factors. The persistence of relatively cold and dry climate conditions in northeastern Poland during the first one and a half millennia of the Holocene could be related to a regional eastern European atmospheric circulation pattern. Prevailing anticyclonic circulation linked to a high-pressure cell above the retreating Scandinavian Ice Sheet might have blocked the influence of warm and moist Westerlies and attenuated the early Holocene climatic amelioration in the Lake Hancza region until the final decay of the ice sheet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study we reconstruct quantitatively the Middle to Upper Miocene climate evolution in the southern Forecarpathian Basin (Central Paratethys area, Northwest Bulgaria) by applying the coexistence approach to 101 well-dated palynofloras isolated from three cores. The climatic evolution is compared with changes in vegetation and palaeogeography. The Middle Miocene was a period of a subtropical/warm-temperate humid climate with mean annual temperature (MAT) between 16 and 18°C and mean annual precipitation (MAP) between 1100 and 1300 mm. Thereby, during the entire Middle Miocene a trend of slightly decreasing temperatures is observed and only small climate fluctuations occur which are presumably related to palaeogeographic reorganisations. The vegetation shows a corresponding trend with a decrease in abundance of palaeotropic and thermophilous elements. The Upper Miocene is characterised by more diverse climatic conditions, probably depending on palaeogeographic and global climatic transformations. The beginning of this period is marked by a slight cooling and a significant drying of the climate, with MAT 13.3-17°C and MAP 652-759 mm. After that, fluctuations of all palaeoclimate parameters occur displaying cycles of humid/dryer and warmer/cooler conditions, which are again well reflected in the vegetation. Our study provides a first quantitative model of the Middle-Upper Miocene palaeoclimate evolution in Southeastern Europe and is characterised by a relatively high precision and resolution with respect to the climate data and stratigraphy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Late Pleistocene and Holocene sediment core from the nowadays terrestrialised portion of the Löddigsee in Southern Mecklenburg, Germany was palynologically investigated. The lake is situated in the rarely investigated Young moraine area at the transition from the Weichselian to the Saalian glaciation. The high-resolution pollen diagram contributes to the establishment of the north-eastern German Late Pleistocene pollen stratigraphy. The vegetation distribution pattern after the end of the Weichselian is in good agreement with other studies from North-eastern Germany, but also has its own characteristics. The Holocene vegetation development reveals features from the north-eastern and north-western German lowlands. A special focus was laid on the environmental history of the two settlements on an island within the lake (Late Neolithic and Younger Slavic period), which were preserved under moist conditions. Both settlements were constructed during a period of low lake level. Although there is evidence of agriculture in the area during the respective periods, the two island settlements seem to have served other purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53' N, 36°29.55' E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18-14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1-14.5 kyr BP), indicated by d18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative d13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5-12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative d13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7-8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5-5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The last glacial-interglacial transition or Termination I (T I) is well documented in the Black Sea, whereas little is known about climate and environmental dynamics during the penultimate Termination (T II). Here we present a multi-proxy study based on a sediment core from the SE Black Sea covering the penultimate glacial and almost the entire Eemian interglacial (133.5 ±0.7-122.5 ±1.7 ka BP). Proxies comprise ice-rafted debris (IRD), O and Sr isotopes as well as Sr/Ca, Mg/Ca, and U/Ca ratios of benthic ostracods, organic and inorganic sediment geochemistry, as well as TEX86 and UK'37derived water temperatures. The ending penultimate glacial (MIS 6, 133.5 to 129.9 ±0.7 ka BP) is characterised by mean annual lake surface temperatures of about 9°C as estimated from the TEX86 palaeothermometer. This period is impacted by two Black Sea melt water pulses (BSWP-II-1 and 2) as indicated by very low Sr/Ca ostracods but high sedimentary K/Al values. Anomalously high radiogenic 87Sr/86Sr ostracod values (max. 0.70945) during BSWP-II-2 suggest a potential Himalayan source communicated via the Caspian Sea. The T II warming started at 129.9 ±0.7 ka BP, witnessed by abrupt disappearance of IRD, increasing d18O ostracod values, and a first TEX86 derived temperature rise of about 2.5°C. A second, abrupt warming step to ca. 15.5°C as the prelude of the Eemian warm period is documented at 128.3 ka BP. The Mediterranean-Black Sea reconnection most likely occurred at 128.1 ±0.7 ka BP as demonstrated by increasing Sr/Ca ostracods and U/Ca ostracods values. The disappearance of ostracods and TOC contents >2% document the onset of Eemian sapropel formation at 127.6 ka BP. During sapropel formation, TEX86 temperatures dropped and stabilised at around 9°C, while UK'37 temperatures remain on average 17°C. This difference is possibly caused by a habitat shift of Thaumarchaeota communities from surface towards nutrient-rich deeper and colder waters located above the gradually establishing halo-and redoxcline.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study a radiocarbon-dated pollen record from Lake Kotokel (52°47' N, 108°07' E, 458 m a.s.l.) located in southern Siberia east of Lake Baikal was used to derive quantitative characteristics of regional vegetation and climate from about 15 kyr BP (1 kyr = 1000 cal. yr) until today. Quantitative reconstruction of the late glacial vegetation and climate dynamics suggests that open steppe and tundra communities predominated in the study area prior to ca. 13.5 kyr BP and again during the Younger Dryas interval, between 12.8 and 11.6 kyr BP. The pollen-based climate reconstruction suggests lower-than-present mean January (~ -38 °C) and July (~ 12 °C) temperatures and annual precipitation (~ 270-300 mm) values during these time intervals. Boreal woodland replaced the primarily open landscape around Kotokel three times at about 14.8-14.7 kyr BP, during the Allerød Interstadial between 13.3-12.8 kyr BP and with the onset of the Holocene interglacial between 11.5 and 10.5 kyr BP, presumably in response to a noticeable increase in precipitation, and in July and January temperatures. The maximal spread of the boreal forest (taiga) communities in the region is associated with a warmer and wetter-than-present climate (Tw ~ 17-18 °C, Tc ~ -19 °C, Pann ~ 500-550 mm) that occurred ca. 10.8-7.3 kyr BP. During this time interval woody vegetation covered more than 50 % of the area within a 21x21 km window around the lake. The pollen-based best modern analogue reconstruction suggests a decrease in woody cover percentages and in all climatic variables about 7-6.5 kyr BP. Our results demonstrate a gradual decrease in precipitation and mean January temperature towards their present-day values in the region around Lake Kotokel since that time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study we map the spatial distribution of selected dissolved constituents in Icelandic river waters using GIS methods to study and interpret the connection between river chemistry, bedrock, hydrology, vegetation and aquatic ecology. Five parameters were selected: alkalinity, SiO2, Mo, F and the dissolved inorganic nitrogen and dissolved inorganic phosphorus mole ratio (DIN/DIP). The highest concentrations were found in rivers draining young rocks within the volcanic rift zone and especially those draining active central volcanoes. However, several catchments on the margins of the rift zone also had high values for these parameters, due to geothermal influence or wetlands within their catchment area. The DIN/DIP mole ratio was higher than 16 in rivers draining old rocks, but lowest in rivers within the volcanic rift zone. Thus primary production in the rivers is limited by fixed dissolved nitrogen within the rift zone, but dissolved phosphorus in the old Tertiary catchments. Nitrogen fixation within the rift zone can be enhanced by high dissolved molybdenum concentrations in the vicinity of volcanoes. The river catchments in this study were subdivided into several hydrological categories. Importantly, the variation in the hydrology of the catchments cannot alone explain the variation in dissolved constituents. The presence or absence of central volcanoes, young reactive rocks, geothermal systems and wetlands is important for the chemistry of the river waters. We used too many categories within several of the river catchments to be able to determine a statistically significant connection between the chem¬istry of the river waters and the hydrological categories. More data are needed from rivers draining one single hydrological category. The spatial dissolved constituent distribution clearly revealed the difference between the two extremes, the young rocks of the volcanic rift zone and the old Tertiary terrain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In tropical eastern Africa, vegetation distribution is largely controlled by regional hydrology, which has varied over the past 20 000 years. Therefore, accurate reconstructions of past vegetation and hydrological changes are crucial for a better understanding of climate variability in the tropical southeastern African region. We present high-resolution pollen records from a marine sediment core recovered offshore of the Rufiji River delta. Our data document significant shifts in pollen assemblages during the last deglaciation, identifying, through changes in both upland and lowland vegetation, specific responses of plant communities to atmospheric (precipitation) and coastal (coastal dynamics and sea-level changes) alterations. Specifically, arid conditions reflected by a maximum pollen representation of dry and open vegetation occurred during the Northern Hemisphere cold Heinrich event 1 (H1), suggesting that the expansion of drier upland vegetation was synchronous with cold Northern Hemisphere conditions. This arid period is followed by an interval in which forest and humid woodlands expanded, indicating a hydrologic shift towards more humid conditions. Droughts during H1 and the shift to humid conditions around 14.8 kyr BP in the uplands are consistent with latitudinal shifts of the intertropical convergence zone (ITCZ) driven by high-latitude Northern Hemisphere climatic fluctuations. Additionally, our results show that the lowland vegetation, consisting of well-developed salt marshes and mangroves in a successional pattern typical for vegetation occurring in intertidal habitats, has responded mainly to local coastal dynamics related to marine inundation frequencies and soil salinity in the Rufiji Delta as well as to the local moisture availability. Lowland vegetation shows a substantial expansion of mangrove trees after ~ 14.8 kyr BP, suggesting an increased moisture availability and river runoff in the coastal area. The results of this study highlight the decoupled climatic and environmental processes to which the vegetation in the uplands and the Rufiji Delta has responded during the last deglaciation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To better understand Holocene vegetation and hydrological changes in South Africa, we analyzed pollen and microcharcoal records of two marine sites GeoB8331 and GeoB8323 from the Namaqualand mudbelt offshore the west coast of South Africa covering the last 9900 and 2200 years, respectively. Our data corroborate findings from literature that climate developments apparently contrast between the summer rainfall zone (SRZ) and winter rainfall zone (WRZ) over the last 9900 years, especially during the early and middle Holocene. During the early Holocene (9900-7800 cal.yr BP), a minimum of grass pollen suggests low summer rainfall in the SRZ, and the initial presence of Renosterveld vegetation indicates relatively wet conditions in the WRZ. Towards the middle Holocene (7800-2400 cal. yr BP), a rather moist savanna/grassland rich in grasses suggests higher summer rainfall in the SRZ resulting from increased austral summer insolation and a decline of fynbos vegetation accompanied by an increasing Succulent Karoo vegetation in the WRZ possibly suggests a southward shift of the Southern Hemisphere westerlies. During the last 2200 years, a trend towards higher aridity was observed for the SRZ, while the climate in the WRZ remained relatively stable. The Little Ice Age (ca. 700-200 cal. yr BP) was rather cool in both rainfall zones and drier in the SRZ while wetter in the WRZ.