79 resultados para Uniform coverage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Biological interactions can alter predictions that are based on single-species physiological response. It is known that leaf segments of the seagrass Posidonia oceanica will increase photosynthesis with lowered pH, but it is not clear whether the outcome will be altered when the whole plant and its epiphyte community, with different respiratory and photosynthetic demands, are included. In addition, the effects on the Posidonia epiphyte community have rarely been tested under controlled conditions, at near-future pH levels. 2. In order to better evaluate the effects of pH levels as projected for the upcoming decades on seagrass meadows, shoots of P. oceanica with their associated epiphytes were exposed in the laboratory to three pH levels (ambient: 8.1, 7.7 and 7.3, on the total scale) for 4 weeks. Net productivity, respiration, net calcification and leaf fluorescence were measured on several occasions. At the end of the study, epiphyte community abundance and composition, calcareous mass and crustose coralline algae growth were determined. Finally, photosynthesis vs. irradiance curves (PE) was produced from segments of secondary leaves cleaned of epiphytes and pigments extracted. 3. Posidonia leaf fluorescence and chlorophyll concentrations did not differ between pH treatments. Net productivity of entire shoots and epiphyte-free secondary leaves increased significantly at the lowest pH level yet limited or no stimulation in productivity was observed at the intermediate pH treatment. Under both pH treatments, significant decreases in epiphytic cover were observed, mostly due to the reduction of crustose coralline algae. The loss of the dominant epiphyte producer yet similar photosynthetic response for epiphyte-free secondary leaves and shoots suggests a minimal contribution of epiphytes to shoot productivity under experimental conditions. 4. Synthesis. Observed responses indicate that under future ocean acidification conditions foreseen in the next century an increase in Posidonia productivity is not likely despite the partial loss of epiphytic coralline algae which are competitors for light. A decline in epiphytic cover could, however, reduce the feeding capacity of the meadow for invertebrates. In situ long-term experiments that consider both acidification and warming scenarios are needed to improve ecosystem-level predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multibeam data were measured during R/V Polarstern cruise ANT-XXII/3 along track lines of approximately 8000 NM total length during transits and partly during stationary work. Data were achieved on a transect along the Greenwich meridian, across the Weddell Sea from Kapp Norvegia to Joinville Island, across the Powell Basin, furthermore in the Drake Passage and west of Antarctic Peninsula. Short bathymetric surveys were carried out on the continental slope off Kapp Norvegia and Fimbulisen, and in the area of the Weddell Abyssal Plain. The multibeam sonar system Hydrosweep DS-2 was operated mainly in the HDBE softbeam mode with 240 depth values per swath and a receiving coverage of 100°. The refraction correction was achieved utilizing CTD profiles or the system's own cross fan calibration. The quality of data might be reduced during bad weather periods or adverse sea ice conditions. The dataset contains raw data that are not processed and thus may contain errors and blunders in depth and position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manganese nodules were investigated during the Downwind Expedition, a part of the International Geophysical Year programme of the Scripps Institution of Oceanography of the University of California. Attempts were made to collect bottom photographs, cores and dredge hauls in the same areas, to measure the distribution at the surface and in depth, and to obtain large samples for physical and chemical analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ascidians (Ascidiacea: Tunicata) are sessile suspension feeders that represent dominant epifaunal components of the Southern Ocean shelf benthos and play a significant role in the pelagic-benthic coupling. Here, we report the results of a first study on the relationship between the distribution patterns of eight common and/or abundant (putative) ascidian species, and environmental drivers in the waters off the northern Antarctic Peninsula. During RV Polarstern cruise XXIX/3 (PS81) in January-March 2013, we used seabed imaging surveys along 28 photographic transects of 2 km length each at water depths from 70 to 770 m in three regions (northwestern Weddell Sea, southern Bransfield Strait and southern Drake Passage), differing in their general environmental setting, primarily oceanographic characteristics and sea-ice dynamics, to comparatively analyze the spatial patterns in the abundance of the selected ascidians, reliably to be identified in the photographs, at three nested spatial scales. At a regional (100-km) scale, the ascidian assemblages of the Weddell Sea differed significantly from those of the other two regions, whereas at an intermediate 10-km scale no such differences were detected among habitat types (bank, upper slope, slope, deep/canyon) on the shelf and at the shelf break within each region. These spatial patterns were superimposed by a marked small-scale (10-m) patchiness of ascidian distribution within the 2-km-long transects. Among the environmental variables considered in our study, a combination of water-mass characteristics, sea-ice dynamics (approximated by 5-year averages in sea-ice cover in the region of or surrounding the photographic stations), as well as the seabed ruggedness, was identified as explaining best the distribution patterns of the ascidians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting sea-ice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer. This data set is used to produce an Arctic-wide map of light distribution under summer sea ice. Our results show that transmittance through first-year ice (FYI, 0.11) was almost three times larger than through multi-year ice (MYI, 0.04), and that this is mostly caused by the larger melt-pond coverage of FYI (42 vs. 23%). Also energy absorption was 50% larger in FYI than in MYI. Thus, a continuation of the observed sea-ice changes will increase the amount of light penetrating into the Arctic Ocean, enhancing sea-ice melt and affecting sea-ice and upper-ocean ecosystems.