71 resultados para Tohoku Tsunami
Resumo:
The Kap Mackenzie area on the outer coast of northeast Greenland was glaciated during the last glacial stage, and pre-Holocene shell material was brought to the area. Dating of marine shells indicates that deglaciation occurred in the earliest Holocene, before 10 800 cal. a BP. The marine limit is around 53 m a.s.l. In the wake of the deglaciation, a glaciomarine fauna characterized the area, but after c. one millennium a more species-rich marine fauna took over. This fauna included Mytilus edulis and Mysella sovaliki, which do not live in the region at present; the latter is new to the Holocene fauna of northeast Greenland. The oldest M. edulis sample is dated to c. 9500 cal. a BP, which is the earliest date for the species from the region and indicates that the Holocene thermal maximum began earlier in the region than previously documented. This is supported by driftwood dated to c. 9650 cal. a BP, which is the earliest driftwood date so far from northeastern Greenland and implies that the coastal area was at least partly free of sea ice in summer. As indicated by former studies, the Storegga tsunami hit the Kap Mackenzie area at c. 8100 cal. a BP. Loon Lake, at 18 m a.s.l., was isolated from the sea at c. 6200 cal. a BP, which is distinctly later than expected from existing relative sea-level curves for the region.
Resumo:
The cores and dredges described in this report were taken on the GH76-2 Expedition in March-May, 1976 by the Geological Survey of Japan from the R/V Hakurei Maru. A total of 47 cores and dredges sites have been visited. The survey covered the whole of the Pacific side of the Tohoku Arc, the southern part of the Kurile Arc and the northern margin of the Izu-Ogasawara (Bonin) Arc. The surveyed area covered the continental shelves, slopes, trenches and Pacific basin along the trenches.
Resumo:
Volcanogenic sediments were obtained from Site 584, located on the midslope of the Japan Trench. Occurrences of volcanic ash in the diatomaceous mudstones increase within sediments dated 6-3 Ma. The frequency pattern and the sediment accumulation rate obtained at Site 584 are similar to those of Site 440 and to those of Sites 438 and 439, located on the upper slope basin. Explosive volcanism increased during the Pliocene and late Miocene in relation to the intrusion of Tertiary granites and uplift of the Tohoku Arc (northeastern Japan Arc). Hygromagmaphile element concentration shows that the glass does not belong to a unique series, and a comparison with Nankai Trough data distinguishes at least two different evolutionary lines.
Resumo:
The Indonesian Arc represents the subduction of the Indian-Australian plate beneath Asia. It has been the scene of catastrophic tectonic activity, including the recent 2004 M=9.1 Aceh earthquake and resulting Indian Ocean tsunami. We have dated planktonic forams associated with historic tephras (Tambora, 1815 and Krakatau, 1883) in marine sediment cores to determine radiocarbon reservoir ages for 2 locations along the arc. Our best estimates for 19th century regional reservoir corrections (DeltaR) are +90 ± 40 yr for surface-dwelling species and +220 ± 40 yr for mixed planktic assemblages containing some upper thermocline species, but scatter in the data suggests that past surface reservoir ages may have varied by about ±100 yr. We used the results of this study to investigate a proposed very large AD 535 eruption at or near Krakatau. We find no evidence for ash from such an eruption, and although this is negative evidence, we consider it sufficiently strong to rule out any possibility that one took place.