69 resultados para Thinning
Resumo:
Photogrammetric reanalysis of 1985 aerial photos has revealed substantial submarine melting of the floating ice tongue of Jakobshavn Isbrae, west Greenland. The thickness of the floating tongue determined from hydrostatic equilibrium tapers from ~940 m near the grounding zone to ~600 m near the terminus. Feature tracking on orthophotos shows speeds on the July 1985 ice tongue to be nearly constant (~18.5 m/d), indicating negligible dynamic thinning. The thinning of the ice tongue is mostly due to submarine melting with average rates of 228 ± 49 m/yr (0.62 ± 0.13 m/d) between the summers of 1984 and 1985. The cause of the high melt rate is the circulation of warm seawater (thermal forcing of up to 4.2°C) beneath the tongue with convection driven by the substantial discharge of subglacial freshwater from the grounding zone. We believe that this buoyancy-driven convection is responsible for a deep channel incised into the sole of the floating tongue. A dramatic thinning, retreat, and speedup began in 1998 and continues today. The timing of the change is coincident with a 1.1°C warming of deep ocean waters entering the fjord after 1997. Assuming a linear relationship between thermal forcing and submarine melt rate, average melt rates should have increased by ~25% (~57 m/yr), sufficient to destabilize the ice tongue and initiate the ice thinning and the retreat that followed.
Resumo:
The southern Bellingshausen Sea (SBS) is a rapidly-changing part of West Antarctica, where oceanic and atmospheric warming has led to the recent basal melting and break-up of the Wilkins ice shelf, the dynamic thinning of fringing glaciers, and sea-ice reduction. Accurate sea-floor morphology is vital for understanding the continued effects of each process upon changes within Antarctica's ice sheets. Here we present a new bathymetric grid for the SBS compiled from shipborne echo-sounder, spot-sounding and sub-ice measurements. The 1-km grid is the most detailed compilation for the SBS to-date, revealing large cross-shelf troughs, shallow banks, and deep inner-shelf basins that continue inland of coastal ice shelves. The troughs now serve as pathways which allow warm deep water to access the ice fronts in the SBS. Our dataset highlights areas still lacking bathymetric constraint, as well as regions for further investigation, including the likely routes of palaeo-ice streams. The new compilation is a major improvement upon previous grids and will be a key dataset for incorporating into simulations of ocean circulation, ice-sheet change and history. It will also serve forecasts of ice stability and future sea-level contributions from ice loss in West Antarctica, required for the next IPCC assessment report in 2013.
Resumo:
Following three decades of relative stability, Jakobshavn Isbrae, West Greenland, underwent dramatic thinning, retreat and speed-up starting in 1998. To assess the amount of ice loss, we analyzed 1985 aerial photos and derived a 40 m grid digital elevation model (DEM). We also obtained a 2007 40 m grid SPOT DEM covering the same region. Comparison of the two DEMs over an area of ~4000 km**2 revealed a total ice loss of 160 ± 4 km**3, with 107 ± 0.2 km**3 in grounded regions (0.27 mm eustatic sea-level rise) and 53 ± 4 km**3 from the disintegration of the floating tongue. Comparison of the DEMs with 1997 NASA Airborne Topographic Mapper data indicates that this ice loss essentially occurred after 1997, with +0.7 ± 5.6 km**3 between 1985 and 1997 and -160 ± 7 km**3 between 1997 and 2007. The latter is equivalent to an average specific mass balance of -3.7 ± 0.2 m/a over the study area. Previously reported thickening of the main glacier during the early 1990s was accompanied by similar-magnitude thinning outside the areas of fast flow, indicating that the land-based ice continued reacting to longer-term climate forcing.
Resumo:
Late-summer thickness distributions of large ice floes in the Transpolar Drift between Svalbard and the North Pole in 1991, 1996, 1998, and 2001 are compared. They have been derived from drilling and electromagnetic (EM) sounding. Results show a strong interannual variability, with significantly reduced thickness in 1998 and 2001. The mean thickness decreased by 22.5% from 3.11 m in 1991 to 2.41 m in 2001, and the modal thickness by 22% from 2.50 m in 1991 to 1.95 m in 2001. Since modal thickness represents the thickness of level ice, the observed thinning reflects changes in thermodynamic conditions. Together with additional data from the Laptev Sea obtained in 1993, 1995, and 1996, results are in surprising agreement with recently published thickness anomalies retrieved from satellite radar altimetry for Arctic regions south of 81.5°N. This points to a strong sensitivity of radar altimetry data to level ice thickness.
Resumo:
The sedimentary succession drilled at Sites 840 and 841 on the Tonga forearc allows the sedimentary evolution of the active margin to be reconstructed since shortly after the initiation of subduction during the mid Eocene. Sedimentation has been dominated by submarine fan deposits, principally volcaniclastic turbidites and mass-flows derived from the volcanic arc. Volcaniclastic sedimentation occurred against a background of pelagic nannofossil sedimentation. A number of upward-fining cycles are recognized and are correlated to regional tectonic events, such as the rifting of the Lau Basin at 5.6 Ma. Episodes of sedimentation dating from 16.0 and 10.0 Ma also correlate well with major falls in eustatic sea level and may be at least partially caused by the resulting enhanced erosion of the arc edifice. The early stages of rifting of the Lau Basin are marked by the formation of a brief hiatus at Site 840 (Horizon A), probably a result of the uplift of the Tonga Platform. Controversy exists as to the degree and timing of the uplift of Site 840 before Lau Basin rifting, with estimates ranging from 2500 to 300 m. Structural information favors a lower value. Breakup of the Tonga Arc during rifting resulted in deposition of dacite-dominated, volcaniclastic mass flows, probably reflecting a maximum in arc volcanism at this time. A pelagic interval at Site 840 suggests that no volcanic arc was present adjacent to the Tonga Platform from 5.0 to 3.0 Ma. This represents the time between separation of the Lau Ridge from the Tonga Platform and the start of activity on the Tofua Arc at 3.0 Ma. The sedimentary successions at both sites provide a record of the arc volcanism despite the reworked nature of the deposits. Probe analyses of volcanic glass grains from Site 840 indicate a consistent low-K tholeiite chemistry from 7.0 Ma to the present, possibly reflecting sediment sourcing from a single volcanic center over long periods of time. Trace and rare-earth-element (REE) analyses of basaltic glass grains indicate that thinning of the arc lithosphere had begun by 7.0 Ma and was the principle cause of a progressive depletion of the high-field-strength (HFSE), REE, and large-ion-lithophile (LILE) elements within the arc magmas before rifting. Magmatic underplating of the Tofua Arc has reversed this trend since that time. Increasing fluid flux from the subducting slab since basin rifting has caused a progressive enrichment in LILEs. Subduction erosion of the underside of the forearc lithosphere has caused continuous subsidence and tilting toward the trench since 37.0 Ma. Enhanced subsidence occurred during rifting of the South Fiji and Lau basins. Collision of the Louisville Ridge with the trench has caused no change in the nature of the sedimentation, but it may have been responsible for up to 300 m of uplift at Site 840.
Resumo:
Observations of snow properties, superimposed ice, and atmospheric heat fluxes have been performed on first-year and second-year sea ice in the western Weddell Sea, Antarctica. Snow in this region is particular as it does usually survive summer ablation. Measurements were performed during Ice Station Polarstern (ISPOL), a 5-week drift station of the German icebreaker RV Polarstern. Net heat flux to the snowpack was 8 W/m**2, causing only 0.1 to 0.2 m of thinning of both snow cover types, thinner first-year and thicker second-year snow. Snow thinning was dominated by compaction and evaporation, whereas melt was of minor importance and occurred only internally at or close to the surface. Characteristic differences between snow on first-year and second-year ice were found in snow thickness, temperature, and stratigraphy. Snow on second-year ice was thicker, colder, denser, and more layered than on first-year ice. Metamorphism and ablation, and thus mass balance, were similar between both regimes, because they depend more on surface heat fluxes and less on underground properties. Ice freeboard was mostly negative, but flooding occurred mainly on first-year ice. Snow and ice interface temperature did not reach the melting point during the observation period. Nevertheless, formation of discontinuous superimposed ice was observed. Color tracer experiments suggest considerable meltwater percolation within the snow, despite below-melting temperatures of lower layers. Strong meridional gradients of snow and sea-ice properties were found in this region. They suggest similar gradients in atmospheric and oceanographic conditions and implicate their importance for melt processes and the location of the summer ice edge.
Resumo:
Helicopter-borne electromagnetic sea ice thickness measurements were performed over the Transpolar Drift in late summers of 2001, 2004, and 2007, continuing ground-based measurements since 1991. These show an ongoing reduction of modal and mean ice thicknesses in the region of the North Pole of up to 53 and 44%, respectively, since 2001. A buoy derived ice age model showed that the thinning was mainly due to a regime shift from predominantly multi- and second-year ice in earlier years to first-year ice in 2007, which had modal and mean summer thicknesses of 0.9 and 1.27 m. Measurements of second-year ice which still persisted at the North Pole in April 2007 indicate a reduction of late-summer second-year modal and mean ice thicknesses since 2001 of 20 and 25% to 1.65 and 1.81 m, respectively. The regime shift to younger and thinner ice could soon result in an ice free North Pole during summer.
Resumo:
Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79-90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.
Resumo:
The deformation of a 20 m deep firn pit in the accumulation area of Kesselwandferner was surveyed over aperiod of 11 years. Six or seven surveying markers had been installed at each of 14 levels. The survey shows tImt the shear strain rate is independent of depth and the originally circular pit cross section was changed into an ellipse. In the direction of the glacier flow, the diameter was increased, the strain rate being approximately independent of depth. Transverse to the flow, however, the diameter decreased, the strain rate becoming higher as the depth increased. The vertical strain rates responsible for thinning of firn layers decrease with depth.