169 resultados para TRATADOS COMERCIALES - ASPECTOS SOCIOECONOMICOS - CANADA - 2007-2008
Resumo:
Two mesocosm experiments, PAME-I and PAME-II were conducted in 2007 and 2008 to investigate fate of organic carbon in the arctic microbial food web. Mesocosms were nutrient fertilized initially to induce phytoplankton bloom development. In PAME-I eight units (each 700 L) formed two four point gradients of additional DOC in form of glucose (0, 0.5, 1 and 3 times Redfield ratio in terms of carbon relative to the nitrogen and phosphorus additions) (Fig. 1). All the eight units also got a daily dose of NH4+ and PO4**3- in Redfield ratio. Two gradients were set up, one with silicate addition, performed in the Arctic location Ny Ålesund, Svalbard, have previously been reported to give different food-web level responses to similar nutrient perturbations. In PAME-II all ten units (each 900 L) formed two four point gradients of additional DOC in form of glucose (0, 0.5, 1, 2 and 3 times Redfield ratio in terms of carbon relative to nitrogen and phosphorus additions). The two gradients in glucose were kept silicate replete. NH4+ was used as the DIN source in one gradient (units 1 to 5) and NO3- in the other (units 6-9). All units got a daily dose of PO4**3- in Redfield ratio. Prokaryotes and viruses were measured by flow cytometry, while ciliate abundances were counted using a Flow Cam. Viral and bacterial diversity was measured by PFGE and DGGE, respectively. In PAME-II the abundance of ciliates was lower than in PAME-I, presumably caused by higher copepod grazing. The abundances of prokaryotes and viruses were also lower in PAME-II compared to PAME-I. Further, less diversity was detected in the viral community (FCM and PFGE) in PAME-II, and no response was observed in the bacterial community structure due to addition of organic carbon.
Resumo:
Natural radionuclides and man-made 137Cs were analyzed in five short sediment cores taken in northern part of the Gulf of Eilat (Gulf of Aqaba) in order to provide information on sedimentation and mixing rates and sediment sources. The maximum estimates of sedimentation rates based on excess 210Pb were found to vary between 0.105 ± 0.020 and 0.35 ± 0.23 cm · year**-1. Even the lowest estimates are significantly higher than those expected from dust deposition, suggesting other sources and processes being responsible for most of the allochthonous material accumulation, including periodical floods following heavy rain events, internal erosion or triggers, like earthquakes. In 137Cs depth profiles no 1963 related nuclear weapon test maxima were found; instead, the activities decrease monotonically, suggesting that a major process leading to radionuclides' depth distribution might be mixing. The mixing rates calculated from 137Cs, excess 210Pb and excess 228Th reach values up to 2.18 ± 0.69 cm**2 · year**-1.
Resumo:
A ship-based acoustic mapping campaign was conducted at the exit of Ilulissat Ice Fjord and in the sedimentary basin of Disko Bay to the west of the fjord mouth. Submarine landscape and sediment distribution patterns are interpreted in terms of glaciomarine facies types that are related to variations in the past position of the glacier front. In particular, asymmetric ridges that form a curved entity and a large sill at the fjord mouth may represent moraines that depict at least two relatively stable positions of the ice front in the Disko Bay and at the fjord mouth. In this respect, Ilulissat Glacier shows prominent differences to the East Greenland Kangerlussuaq Glacier which is comparable in present size and present role for the ice discharge from the inland ice sheet. Two linear clusters of pockmarks in the center of the sedimentary basin seem to be linked to ongoing methane release due to dissociation of gas hydrates, a process fueled by climate warming in the Arctic realm.
Resumo:
Seasonal dynamics in the activity of Arctic shelf benthos have been the subject of few local studies, and the pronounced among-site variability characterizing their results makes it difficult to upscale and generalize their conclusions. In a regional study encompassing five sites at 100-595 m water depth in the southeastern Beaufort Sea, we found that total pigment concentrations in surficial sediments, used as proxies of general food supply to the benthos, rose significantly after the transition from ice-covered conditions in spring (March-June 2008) to open-water conditions in summer (June-August 2008), whereas sediment Chl a concentrations, typical markers of fresh food input, did not. Macrobenthic biomass (including agglutinated foraminifera >500 µm) varied significantly among sites (1.2-6.4 g C/m**2 in spring, 1.1-12.6 g C/m**2 in summer), whereas a general spring-to-summer increase was not detected. Benthic carbon remineralisation also ranged significantly among sites (11.9-33.2 mg C/m**2/day in spring, 11.6-44.4 mg C/m**2/day in summer) and did in addition exhibit a general significant increase from spring-to-summer. Multiple regression analysis suggests that in both spring and summer, sediment Chl a concentration is the prime determinant of benthic carbon remineralisation, but other factors have a significant secondary influence, such as foraminiferan biomass (negative in both seasons), water depth (in spring) and infaunal biomass (in summer). Our findings indicate the importance of the combined and dynamic effects of food supply and benthic community patterns on the carbon remineralisation of the polar shelf benthos in seasonally ice-covered seas.
Resumo:
Melt pond covered sea ice is a ubiquitous feature of the summertime Arctic Ocean when meltwater collects in lower-lying areas of ice surfaces. Horizontal transects were conducted during June 2008 above and below landfast sea ice with melt ponds to characterize surface and bottom topography together with variations in transmitted spectral irradiance. We captured a rapid progression from a highly flooded sea ice surface with lateral drainage toward flaws and seal breathing holes to the formation of distinct melt ponds with steep edges. As the mass of the ice cover decreased due to meltwater drainage and rose upward with respect to the seawater level, the high-scattering properties of ice above the water level (i.e., white ice) were continuously regenerated, while pond waters remained transparent compared to underlying ice. The relatively stable albedos observed throughout the study, even as ice thickness decreased, were directly related to these surface processes. Transmission through the ice cover of incident irradiance in the 400-700 nm wave band ranged from 38% to 67% and from 5% to 16% beneath ponded and white ice, respectively. Our results show that this transmission varied not only as a function of surface type (melt ponds or white ice) areal coverage but also in relation to ice thickness and proximity to other surface types through the influence of horizontal spreading of light. Thus, in contrast to albedo, this implies that regional transmittance estimates need to consider melt pond size and shape distributions and variations in optical properties and thickness of the ice cover.
Resumo:
This is the first study to determine vertical distribution patterns of sympagic meiofauna, including metazoans, protozoans and eggs >20 µm, in the Amundsen Gulf (southeastern Beaufort Sea, Arctic). Full sea-ice cores were sampled from mid of March to end of May 2008 (Circumpolar Flaw Lead system study). Investigations were performed on first-year ice from three pack- and three fast-ice stations. Additionally, 5-cm bottom-ice sections were sampled at 13 pack-ice and 5 fast-ice stations. The metazoan community was composed of nematodes, rotifers, copepods, copepod nauplii, platyhelminthes and a few rare taxa such as mollusks, cnidarians and nemerteans. High numbers of eggs, between 50 and 2,188 eggs/L, particularly of nematodes and copepods, were present in the ice. Investigations revealed also eggs of the pelagic species Calanus hyperboreus and Sagitta spp. within the ice, so that further research is needed to clarify whether more organisms than expected might use this habitat as a reproduction ground. Many different morphotypes of protozoans were observed in the samples, especially ciliates of the order Euplotida. The highest abundance was always found in the lowermost 5 cm of the ice cores, nevertheless sympagic meiofauna was not restricted to that part of the ice. Integrated meiofauna abundance ranged between 41 and 4,738 x 10**2 Ind/m**2 and was highest in the fast ice in early May. Differences between pack and fast ice in terms of integrated meiofauna communities and vertical distribution were not significant, while the analysis of the bottom-ice sections indicated both a temporal development and ice-type-specific differences.
Resumo:
Lake ice change is one of the sensitive indicators of regional and global climate change. Different sources of data are used in monitoring lake ice phenology nowadays. Visible and Near Infrared bands of imagery (VNIR) are well suited for the observation of freshwater ice change, for example data from AVHRR and MODIS. Active and passive microwave data are also used for the observation of lake ice, e.g., from satellite altimetry and radiometry, backscattering coefficient from QuickSCAT, brightness temperature (Tb) from SSM/I, SMMR, and AMSR-E. Most of the studies are about lake ice cover phenology, while few studies focus on lake ice thickness. For example, Hall et al. using 5 GHz (6 cm) radiometer data showed a good relationship between Tb and ice thickness. Kang et al. found the seasonal evolution of Tb at 10.65 GHz and 18.7 GHz from AMSR-E to be strongly influenced by ice thickness. Many studies on lake ice phenology have been carried out since the 1970s in cold regions, especially in Canada, the USA, Europe, the Arctic, and Antarctica. However, on the Tibetan Plateau, very little research has focused on lake ice-cover change; only a small number of published papers on Qinghai Lake ice observations. The main goal of this study is to investigate the change in lake ice phenology at Nam Co on the Tibetan Plateau using MODIS and AMSR-E data (monitoring the date of freeze onset, the formation of stable ice cover, first appearance of water, and the complete disappearance of ice) during the period 2000-2009.
Resumo:
To assess geographic distributions of elements in the Arctic we compared essential and non-essential elements in the livers of polar bears (Ursus maritimus) collected from five regions within Canada in 2002, in Alaska between 1994 and 1999 and from the northwest and east coasts of Greenland between 1988 and 2000. As, Hg, Pb and Se varied with age, and Co and Zn with gender, which limited spatial comparisons across all populations to Cd, which was highest in Greenland bears. Collectively, geographic relationships appeared similar to past studies with little change in concentration over time in Canada and Greenland for most elements; Hg and Se were higher in some Canadian populations in 2002 as compared to 1982 and 1984. Concentrations of most elements in the polar bears did not exceed toxicity thresholds, although Cd and Hg exceeded levels correlated with the formation of hepatic lesions in laboratory animals.
Resumo:
Inter-individual variation in diet within generalist animal populations is thought to be a widespread phenomenon but its potential causes are poorly known. Inter-individual variation can be amplified by the availability and use of allochthonous resources, i.e., resources coming from spatially distinct ecosystems. Using a wild population of arctic fox as a study model, we tested hypotheses that could explain variation in both population and individual isotopic niches, used here as proxy for the trophic niche. The arctic fox is an opportunistic forager, dwelling in terrestrial and marine environments characterized by strong spatial (arctic-nesting birds) and temporal (cyclic lemmings) fluctuations in resource abundance. First, we tested the hypothesis that generalist foraging habits, in association with temporal variation in prey accessibility, should induce temporal changes in isotopic niche width and diet. Second, we investigated whether within-population variation in the isotopic niche could be explained by individual characteristics (sex and breeding status) and environmental factors (spatiotemporal variation in prey availability). We addressed these questions using isotopic analysis and Bayesian mixing models in conjunction with linear mixed-effects models. We found that: i) arctic fox populations can simultaneously undergo short-term (i.e., within a few months) reduction in both isotopic niche width and inter-individual variability in isotopic ratios, ii) individual isotopic ratios were higher and more representative of a marine-based diet for non-breeding than breeding foxes early in spring, and iii) lemming population cycles did not appear to directly influence the diet of individual foxes after taking their breeding status into account. However, lemming abundance was correlated to proportion of breeding foxes, and could thus indirectly affect the diet at the population scale.
Resumo:
Top predators of the arctic tundra are facing a long period of very low prey availability during winter and subsidies from other ecosystems such as the marine environment may help to support their populations. Satellite tracking of snowy owls, a top predator of the tundra, revealed that most adult females breeding in the Canadian Arctic overwinter at high latitudes in the eastern Arctic and spend several weeks (up to 101 d) on the sea-ice between December and April. Analysis of high-resolution satellite images of sea-ice indicated that owls were primarily gathering around open water patches in the ice, which are commonly used by wintering seabirds, a potential prey. Such extensive use of sea-ice by a tundra predator considered a small mammal specialist was unexpected, and suggests that marine resources subsidize snowy owl populations in winter. As sea-ice regimes in winter are expected to change over the next decades due to climate warming, this may affect the wintering strategy of this top predator and ultimately the functioning of the tundra ecosystem.
Resumo:
The rapid warming of arctic regions during recent decades has been recorded by instrumental monitoring, but the natural climate variability in the past is still sparsely reconstructed across many areas. We have reconstructed past climate changes in subarctic west-central Canada. Stable carbon and oxygen isotope ratios (d13C, d18O) were derived from a single Sphagnum fuscum plant component; alpha-cellulose isolated from stems. Periods of warmer and cooler conditions identified in this region, described in terms of a "Mediaeval Climatic Anomaly" and "Little Ice Age" were registered in the temperature reconstruction based on the d13C record. Some conclusions could be drawn about wet/dry shifts during the same time interval from the d18O record, humification indices and the macrofossil analysis. The results were compared with other proxy data from the vicinity of the study area. The amplitude of the temperature change was similar to that in chironomid based reconstructions, showing c. 6.5 ±2.3 °C variability in July temperatures during the past 6.2 ka.
Resumo:
The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate (N=24-65 per station) 0.25 m**2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind/l (median 0.8 ind/l). In level ice, low ice algal pigment concentrations (<0.1-15.8 µg Chl a /l), low brine salinities (1.8-21.7) and flushing from the melting sea ice likely explain the low ice meiofauna concentrations. Higher abundances of Turbellaria, Nematoda and Harpacticoida also were observed in pressure ridges (0-200 ind/l, median 40 ind/l), although values were highly variable and only medians of Turbellaria were significantly higher in ridge ice than in level ice. Median abundances of under-ice amphipods at all ice types (level ice, various ice ridge structures) ranged from 8 to 114 ind/m**2 per station and mainly consisted of Apherusa glacialis (87%), Onisimus spp. (7%) and Gammarus wilkitzkii (6%). Highest amphipod abundances were observed in pressure ridges at depths >3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of enhanced summer ice melt. Previous estimates of Arctic sea ice meiofauna and under-ice amphipods on regional and pan-Arctic scales likely underestimate abundances at least in summer because they typically do not include pressure ridges.
Resumo:
The algorithms designed to estimate snow water equivalent (SWE) using passive microwave measurements falter in lake-rich high-latitude environments due to the emission properties of ice covered lakes on low frequency measurements. Microwave emission models have been used to simulate brightness temperatures (Tbs) for snowpack characteristics in terrestrial environments but cannot be applied to snow on lakes because of the differing subsurface emissivities and scattering matrices present in ice. This paper examines the performance of a modified version of the Helsinki University of Technology (HUT) snow emission model that incorporates microwave emission from lake ice and sub-ice water. Inputs to the HUT model include measurements collected over brackish and freshwater lakes north of Inuvik, Northwest Territories, Canada in April 2008, consisting of snowpack (depth, density, and snow water equivalent) and lake ice (thickness and ice type). Coincident airborne radiometer measurements at a resolution of 80x100 m were used as ground-truth to evaluate the simulations. The results indicate that subsurface media are simulated best when utilizing a modeled effective grain size and a 1 mm RMS surface roughness at the ice/water interface compared to using measured grain size and a flat Fresnel reflective surface as input. Simulations at 37 GHz (vertical polarization) produce the best results compared to airborne Tbs, with a Root Mean Square Error (RMSE) of 6.2 K and 7.9 K, as well as Mean Bias Errors (MBEs) of -8.4 K and -8.8 K for brackish and freshwater sites respectively. Freshwater simulations at 6.9 and 19 GHz H exhibited low RMSE (10.53 and 6.15 K respectively) and MBE (-5.37 and 8.36 K respectively) but did not accurately simulate Tb variability (R= -0.15 and 0.01 respectively). Over brackish water, 6.9 GHz simulations had poor agreement with airborne Tbs, while 19 GHz V exhibited a low RMSE (6.15 K), MBE (-4.52 K) and improved relative agreement to airborne measurements (R = 0.47). Salinity considerations reduced 6.9 GHz errors substantially, with a drop in RMSE from 51.48 K and 57.18 K for H and V polarizations respectively, to 26.2 K and 31.6 K, although Tb variability was not well simulated. With best results at 37 GHz, HUT simulations exhibit the potential to track Tb evolution, and therefore SWE through the winter season.
Resumo:
Cryosols are permafrost-affected soils whose genesis is dominated by cryogenic processes, resulting in unique macromorphologies, micromorphologies, thermal characteristics, and physical and chemical properties. In addition, these soils are carbon sinks, storing high amounts of organic carbon collected for thousands of years. In the Canadian soil classification, the Cryosolic Order includes mineral and organic soils that have both cryogenic properties and permafrost within 1 or 2 m of the soil surface. This soil order is divided into Turbic, Static and Organic great groups on the basis of the soil materials (mineral or organic), cryogenic properties and depth to permafrost. The great groups are subdivided into subgroups on the basis of soil development and the resulting diagnostic soil horizons. Cryosols are commonly associated with the presence of ground ice in the subsoil. This causes serious problems when areas containing these soils are used for agriculture and construction projects (such as roads, town sites and airstrips). Therefore, where Cryosols have high ice content, it is especially important either to avoid these activities or to use farming and construction methods that maintain the negative thermal balance.
Resumo:
Peat plateaus are widespread at high northern latitudes and are important soil organic carbon reservoirs. A warming climate can cause either increased ground subsidence (thermokarst) resulting in lake formation or increased drainage as the permafrost thaws. A better understanding of spatiotemporal variations in these landforms in relation to climate change is important for predicting the future thawing permafrost carbon feedback. In this study, dynamics in thermokarst lake extent during the last 35-50 years has been quantified through time series analysis of aerial photographs and high-resolution satellite images (IKONOS/QuickBird) in three peat plateau complexes, spread out across the northern circumpolar region along a climatic and permafrost gradient. From the mid-1970s until the mid-2000s there has been an increase in mean annual air temperature, winter precipitation, and ground temperature in all three study areas. The two peat plateaus located in the continuous and discontinuous permafrost zones, respectively, where mean annual air temperatures are below -5°C and ground temperatures are -2°C or colder, have experienced small changes in thermokarst lake extent. In the peat plateau located in the sporadic permafrost zone where the mean annual air temperature is around -3°C, and the ground temperature is close to 0°C, lake drainage and infilling with fen vegetation has been extensive and many new thermokarst lakes have formed. In a future progressively warmer and wetter climate permafrost degradation can cause significant impacts on landscape composition and greenhouse gas exchange also in areas with extensive peat plateaus, which presently still experience stable permafrost conditions.