92 resultados para Sierra Nevada (Calif. and Nev.)
Meteorological observations during PHOENIX cruise from Maderia to Sierra Leone started at 1763-12-01
Resumo:
Based on the faunal record of planktonic foraminifers in three long gravity sediment cores from the eastern equatorial Atlantic, the sea-surface temperature history ove the last 750,000 years was studied at a resolution of 3,000 to 10,000 years. Detailed oxygen-isotope and paleomagnetic stratigraphy helped to identify the following major faunal events: Globorotaloides hexagonus and Globorotalia tumida flexuosa became extinct in the eastern tropical Atlantic at the isotope stage 4/5 boundary, now dated at 68,000 years B.P. The persistent occurrence of the pink variety of Globigerinoides ruber started during the late stage 12 at 410,000 years B.P. CARTUNE-age. This datum may provide an easily detectible faunal stratigraphic marker for the mid-Brunhes Chron. The updated scheme of the Ericson zones helped the recognition of a hiatus at the northwestern slope of the Sierra Leone Basin covering oxygen-isotope stages 10 to 12. Classifying the planktonic foraminifer counts into six faunal assemblages, according to the factor analysis derived model of Pflaumann (1985), the tropical and the tropical-upwelling communities account for 57 % at Site 16415, and 86 % at Site 13519, respectively of the variance of the faunal record. A largely continuous paleotemperature record for both winter and summer seasons was obtained from the top of the Sierra Leone Rise with the winter temperatures ranging between 20 and 25 °C, and the summer ones between 24 and 30 °C. The record of cores from greater water depths is frequently interrupted by samples with no-analogue faunal communities and/or poor preservation. Based on the seasonality signal, during cold periods the termal equator shifted to a geographically mnore asymmetrical northern position. Dissolution altering the faunal communities becomes stronger with greater water depth, the estimated mean minimum loss of specimens increases from 70 % to 80 % between 2,860 and 3,850 water depth although some species will be more susceptible than others. Enhanced dissolution occured during stage 4 but also during cold phases in the warm stage 7 and 9. Correlations between the Foraminiferal Dissolution Index and the estimated sea-surface temperatures are significant. Foraminiferal flux rates, negatively correlated to the flux rates of organic carbon and of diatoms, may be a result of enhanced dissolution during cold stages, destroying still more of the faunal signal than indicated by the calculated minimum loss. The fluctuations of the oxygen-isotope curves and the hibernal sea-surfave temperatures are fairly coherent. During warm oxygen-isotope stages the temperature maxima lag often by 5 to 15 ka behind the respective sotope minima. During cold stages, sea-surface temperature changes are partly out of phase and contain additional fluctuations.
Resumo:
Variations in carbonate flux and dissolution, which occurred in the equatorial Atlantic during the last 24,000 years, have been estimated by a new approach that allows the point-by-point determination of paleofluxes to the seafloor. An unprecedented time resolution can thus be obtained which allows sequencing of the relatively rapid events occurring during deglaciation. The method is based on observations that the flux of unsupported 230Th into deep-sea sediments is nearly independent of the total mass flux and is close to the production rate. Thus excess 230Th activity in sediments can be used as a reference against which fluxes of other sedimentary components can be estimated. The study was conducted at two sites (Ceará Rise; western equatorial Atlantic, and Sierra Leone Rise; eastern equatorial Atlantic) in cores raised from three different depths at each site. From measurements of 230Th and CaCO3, changes in carbonate flux with time and depth were obtained. A rapid increase in carbonate production, starting at the onset of deglaciation, was found in both areas. This event may have important implications for the postglacial increase in atmospheric CO2 by increasing the global carbonate carbon to organic carbon rain ratio and decreasing the alkalinity of surface waters (and possibly the North Atlantic Deep Water). Increased carbonate dissolution occurred in the two regions during deglaciation, followed by a minimum during mid-Holocene and renewed intensification of dissolution in late Holocene. During the last 16,000 years, carbonate dissolution was consistently more pronounced in the western than in the eastern basin, reflecting the influence of Antarctic Bottom Water in the west. This trend was reversed during stage 2, possibly due to the accumulation of metabolic CO2 below the level of the Romanche Fracture Zone in the eastern basin.
Resumo:
Low-temperature rock magnetic measurements have distinct diagnostic value. However, in most bulk marine sediments the concentration of ferrimagnetic and antiferromagnetic minerals is extremely low, so even sensitive instrumentation often responds to the paramagnetic contribution of the silicate matrix in the residual field of the magnetometer. Analysis of magnetic extracts is usually performed to solve the problems raised by low magnetic concentrations. Additionally magnetic extracts can be used for several other analyses, for example electron microscopy or X-ray diffraction. The magnetic extraction technique is generally sufficient for sediments dominated by magnetite. In this study however, we show that high-coercivity components are rather underrepresented in magnetic extracts of sediments with a more complex magnetic mineralogy. We test heavy liquid separation, using hydrophilic sodium polytungstenate solution Na6[H2W12O40], to demonstrate the efficiencies of both concentration techniques. Low-temperature cycling of zero-field-cooled, field-cooled and saturation isothermal remanent magnetization acquired at room temperature was performed on dry bulk sediments, magnetic extracts, and heavy liquid separates of clay-rich pelagic sediments originating from the Equatorial Atlantic. The results of the thermomagnetic measurements clarify that magnetic extraction favours components with high spontaneous magnetization, such as magnetite and titanomagnetite. The heavy liquid separation is unbiased with respect to high- and low-coercive minerals, thus it represents the entire magnetic assemblage.
Resumo:
At Site 493, DSDP Leg 66, dioritic basement was reached below lower Miocene (NN1 Zone, 22-24 Ma) terrigenous sediments. Petrographical, mineralogical (including microprobe analyses), and chemical features of the dioritic rocks reveal their magmatic affinity with the calc-alkaline series. Furthermore, their radiometric age (35.3 m.y.) links the basement to the Sierra Madre Occidental in Mexico and to mid-Tertiary volcanic arcs in Central America. The presence of Oligocene diorite 50 km from the trench axis confirms the truncation of the south Mexico margin, which we explain as the result of a 650 to 800 km left-lateral displacement of Central America relative to North America. Truncation must have occurred in the late Miocene, after the diorite intrusion and prior to the present subduction.
Resumo:
Geological features of some areas of the Tropical Atlantic (stratigraphy, tectonic structure, lithology, distribution of ore components in bottom sediments, petrography of bedrocks, etc.) are under consideration in the book. Regularities of concentration of trace elements in iron-manganese nodules, features of these nodules in bottom sediments, distribution of phosphorite nodules and other phosphorites have been studied. Much attention is paid to rocks of the ocean crust. A wide range of mineralization represented by magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals has been found.
Meteorological observations during CYRENE cruise from Plymouth to Sierra Leone started at 1822-06-07
Meteorological observations during WEAZLE cruise from Sierra Leone to St. Jago started at 1775-04-14
Resumo:
The book deals with behavior of phosphorus and its concentration in oceanic phosphorites. The major stages of marine geochemical cycle of phosphorus including its supply to sedimentary basins, precipitation from sea water, distribution and speciation in bottom sediments, diagenetic redistribution, and relation to other elements are under consideration. Formation of recent phosphorites as a culmination of phosphate accumulation in marine and oceanic sediments is examined. Distribution, structure, mineral and chemical compositions of major phosphorite deposits of various age on continental margins, as well as on submarine plateaus, uplifts and seamounts and some islands are described. A summary of trace element abundances in oceanic phosphorites is presented. Problems of phosphorite origin are discussed.
(Table 3) Structure of bacterial poplations from surface sediments of the Sierra Leone Abyssal Plain