367 resultados para Sedimentary discontinuities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of a complex study of the sedimentary cover (continuous seismic profiling and diatom analysis) in the northeastern Sea of Japan including the Bogorov Rise an adjacent part of the Japan Basin and the continental slope, are presented. Two varied-age complexes were distinguished in the sedimentary cover of the continental slope of Primorye: Middle Miocene and Late Miocene - Pleistocene. These complexes formed in a stable tectonic setting with no significant vertical movements. A depression in the acoustic basement is located along the continental slope and it is divided from the Japan Basin by a group of volcanic structures, the most uplifted part of which forms the Bogorov Rise. The depression probably formed before Middle Miocene. In Middle Miocene the Bogorov Rise was already at depths close to modern ones. In the sedimentary cover near the Bogorov Rise buried zones were found. Probably they were channels for gas transportation in pre-Pleistocene. Deformations of sediments that occurred in the beginning of Pleistocene are established in the basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to clarify the sedimentary history and chemical characteristics of clay minerals found in sediments deposited in the distal part of the Bengal Fan since the Himalayas were uplifted 17 m.y. ago. A total of seventy-eight samples were collected from three drilled cores which were to be used for the clay mineral analyses by means of XRD and ATEM. The results obtained from the analyses show that individual clay mineral species in the sediment samples at each site have similar features when the samples are of the same age, whereas these species have different features in samples of differing geological ages. Detrital clay minerals such as illite and chlorite were deposited in greater amounts than kaolinite and smectite during the Early to Middle Miocene. This means that the Himalayan uplift was vigorous at least until the Middle Miocene. In the Pliocene chemical weathering was more prevalent so that instead, in the distal part of the Bengal Fan, kaolinite shows the highest concentrations. This would accord with weaker uplift in the Himalayas. In the Pleistocene period, vigorous Himalayan uplift is characterized by illite-rich sediment in place of kaolinite. In the Holocene, smectite shows the highest concentration in place of the illite and kaolinite which were the predominant clay minerals of the earlier periods. Increasing smectite concentration suggests the Himalayan uplift to have been stable after the Pleistocene period. The smectite analyzed here is found to be dioctahedral Fe-beidellite, and it originated largely from the augite-basalt on the Indian Deccan Traps. The tri-octahedral chlorite is subdivided into three sub-species, an Fe-type, a Mg-type and an intermediate type. The mica clay mineral can be identified as di-octahedral illite which is rich in potassium. The chemical composition and morphology of each clay mineral appears to exhibit no change with burial depth in the sedimentary columns. This implies that there was no systematic transformation of clay minerals with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Claystones immediately overlying the early Eocene age ocean-floor basalt, cored at Ocean Drilling Program (ODP) Site 647, underwent hydrothermal and thermal alterations originating from the basalt, which resulted in changes in both the mineralogical and chemical composition of the sediments. Chlorites and higher magnesium and iron concentrations were found in the lowermost sediment sequence. Upcore, changes in the bulk chemical composition of the sediments become smaller, when compensated for variations in the carbonate content originating from biogenic and authigenic components. Chlorite disappears upcore, but still only part of the swelling clay minerals have survived the thermal influence. Thirty meters above the basalt, the clay mineralogy and chemical composition become uniform throughout the Paleogene section. Iron-rich smectites (i.e., nontronitic types), totally dominate the clay mineral assemblage. Biogenic components, responsible for the dominant part of the calcite and cristobalite contents, vary in amount in the upper part, and so do the authigenic carbonate and sulfide contents. Detrital components, such as kaolinite, illite, quartz, and feldspars, make up a very small proportion of the sediment record. The nontronitic smectites are believed to be authigenic, formed by a supply of iron from the continuous formation of ocean-floor basalt in the ridge area that reacted with the detrital and biogenic silicates and alumina silicates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accumulation of wind blown (eolian) dust in deep-sea sediments reflects the aridity/humidity conditions of the continental region supplying the dust, as well as the "gustiness" of the climate system. Detailed studies of Pleistocene glacial-interglacial dust fluxes suggest changes in accumulation rates corresponding to orbital variations in solar insolation (Milankovitch cycles). While the orbital cycles found in sedimentary archives of the Pleistocene are intricately related to glacial growth and decay, similar global orbital signals recognized in deep-sea sediments of early Paleogene age, the last major greenhouse interval ~65-45 million years ago, could not have been linked to the waxing and waning of large ice sheets. Thus orbital signals recorded in early Paleogene sediments must reflect some other climate response to changes in solar insolation. To explore the potential connection between orbital forcing and the climate processes that control dust accumulation, we generated a high-resolution dust record for ~58 Myr old sediments from Shatsky Rise (ODP Site 1209, paleolatitude ~15°N-20°N). The dust accumulation data provide the first evidence of a correlation between dust flux to the deep sea and orbital cyclicity during the early Paleogene, indicating dust supply responded to insolation forcing during the last major interval of greenhouse climate. Furthermore, the relative amplitude of the dust flux response during the early Paleogene greenhouse was comparable to that during icehouse climates. Thus, subtle variations in solar insolation driven by changes in Earth's orbit about the Sun may have had a similar impact on climate during intervals of overall warmth as they did during glacial-interglacial states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sedimentary sections recovered from the Tonga platform and forearc during Ocean Drilling Program Leg 135 provide a record of the sedimentary evolution of the active margin of the Indo-Australian Plate from late Eocene time to the Present. Facies analyses of the sediments, coupled with interpretations of downhole Formation MicroScanner logs, allow the complete sedimentary and subsidence history of each site to be reconstructed. After taking into account the water depths in which the sediments were deposited and their subsequent compaction, the forearc region of the Tofua Arc (Site 841) can be seen to have experienced an initial period of tectonic subsidence dating from 35.5 Ma. Subsidence has probably been gradual since that time, with possible phases of accelerated subsidence, starting at 16.2 and 10.0 Ma. The Tonga Platform (Site 840) records only the last 7.0 Ma of arc evolution. However, the increased accuracy of paleowater depth determinations possible with shallow-water platform sediments allows the resolution of a distinct increase in subsidence rates at 5.30 Ma. Thus, sedimentology and subsidence analyses show the existence of at least two, and possibly four, separate subsidence events in the forearc region. Subsidence dating from 35.5 Ma is linked to rifting of the South Fiji Basin. Any subsidence dating from 16.2 Ma at Site 841 does not correlate with another known tectonic event and is perhaps linked to localized extensional faulting related to slab roll back during steady-state subduction. Subsidence from 10.0 Ma coincides with the breakup of the early Tertiary Vitiaz Arc because of the subduction polarity reversal in the New Hebrides and the subsequent readjustment of the plate boundary geometry. More recently, rapid subsidence and deposition of a upward-fining cycle from 5.30 Ma to the Present at Site 840 is thought to relate to rifting of the Lau Basin. Sedimentation is principally controlled by tectonic activity, with variations in eustatic sea level playing a significant, but subordinate role. Subduction of the Louisville Seamount Chain seems to have disrupted the forearc region locally, although it had only a modest effect on the subsidence history and sedimentation of the Tonga Platform as a whole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycerol ether lipids have been detected in the bitumen of DSDP sediments from Sites 467, 440B and 380 and from the Green River Shale. The alkyl side groups of these ethers were determined by conversion into deuteroalkanes. The presence of glycerol ethers produced by methanogenic bacteria was indicated in the DSDP bitumens by the formation of monodeuterated phytane and dideuterated biphytane. Other ethers were found with novel non-isoprenoidal side groups which may belong to sulfate-reducing or other, probably anaerobic, bacteria. Kerogen-bound alkoxy groups were determined using hydrogen iodide cleavage of the ether link followed by conversion of the iodoalkanes into corresponding deuteroalkanes. For this reaction, the kerogen was not isolated from the rock matrix. The structures so produced were found to include alkyl groups which have known bacterial precursors as well as others that are presently unknown in organisms. The Green River ether biomarker profile is interpreted as possibly indicative of bacterial diagenesis exclusive of biomethanogenesis.