231 resultados para Ruysch, Frederik, 1638-1731
Resumo:
The distinctly cyclic sediments recovered during ODP Leg 154 played an important role in constructing the astronomical time scale and associated astro(bio)chronology for the Miocene, and in deciphering ocean-climate history. The accuracy of the timescale critically depends on the reliability of the shipboard splice used for the tuning and on the tuning itself. New high-resolution colour- and magnetic susceptibility core scanning data supplemented with limited XRF-data allow improvement of the stratigraphy. The revised composite record results in an improved astronomical age model for ODP Site 926 between 5 and 14.4 Ma. The new age model is confirmed by results of complex amplitude demodulation of the precession and obliquity related cycle patterns. Different values for tidal dissipation are applied to improve the fit between the sedimentary cycle patterns and the astronomical solution. Due to the improved stratigraphy and tuning, supported by the results of amplitude demodulation, the revised time scale yields more reliable age estimates for planktic foraminiferal and calcareous nannofossil events. The results of this study highlight the importance of stratigraphy for timescale construction.
Resumo:
Deep marine successions of early Campanian age from DSDP site 516F drilled at low paleolatitudes in the South Atlantic reveal distinct sub-Milankovitch variability in addition to precession and eccentricity related variations. Elemental abundance ratios point to a similar 5 climatic origin for these variations and exclude a quadripartite structure - as observed in the Mediterranean Neogene - of the precession related cycles as an explanation for the inferred semi-precession cyclicity in MS. However, the semi-precession cycle itself is likely an artifact, reflecting the first harmonic of the precession signal. The sub-Milankovitch variability is best approximated by a ~ 7 kyr cycle as shown by 10 spectral analysis and bandpass filtering. The presence of sub-Milankovitch cycles with a period similar to that of Heinrich events of the last glacial cycle is consistent with linking the latter to low-latitude climate change caused by a non-linear response to precession induced variations in insolation between the tropics.