255 resultados para Reversals: Process, Time Scale, Magnetostratigraphy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stratigraphy and paleoceanography of the late Miocene and early Pliocene have been examined at six sites in the South Atlantic and southwest Pacific oceans: Deep Sea Drilling Project (DSDP) sites 284, 516A, 519, 588, and 590 and two piston cores from Chain cruise 115. A consistent stratigraphy was developed among sites using graphic correlation, which resulted in age models for all sites that are tied to the revised paleomagnetic time scale of Berggren et al. (1985). Applying these chronologies, we assessed latitudinal and interocean contrasts in the stratigraphic ranges of late Miocene-early Pliocene planktonic foraminiferal and nanno - fossil datums. Salient stratigraphic results include (1) The last appearance datum (LAD) of Globoquadrina dehiscens is a late Miocene (approx. 6.4 Ma) event in the subtropics and is not useful for the placement of the Miocene/Pliocene (M/P) boundary in this biogeographic province. (2) The first appearance datum (FAD) of Globorotalia crassaformis occurred at 5.1 Ma in the South Atlantic near the M/P boundary, suggesting that Gr. crassaformis may have first evolved in the South Atlantic and later migrated to other regions. (3) In the southwest Pacific, the FADs of Gr. margaritae (5.97 Ma), Gr. puncticulata (5.09 Ma), and Gr. crassaformis (4.87 Ma) are significantly time transgressive between temperate and warm subtropical regions. Time lags of 1.0 m.y. were required for these species to adapt to physical and/or biotic conditions peripheral to their endemic biogeographic provinces. (4) Between the subtropics of the South Atlantic and southwest Pacific, many planktonic foraminiferal datums (FAD of Dentogloboquadrina altispira, Gr. cibaoensis, Gr. conomiozea, Gr. margaritae, and Gq. dehiscens and LAD of Gr. cibaoensis) markedly depart from the correlation suggested by magnetostratigraphy, indicating that these datum levels are unreliable for correlation between these ocean basins. (5) In contrast, available calcareous nannofossil datum levels fall on or near the paleomagnetic correlation line, indicating synchroneity of events within the subtropics. (6) Biostratigraphic, magnetic, and 87Sr/86Sr correlation between sites 588 and 519 and the M/P neostratotype at Capo Rossello, Sicily, suggests that the base of the Zanclean stratotype occurs at 5.1-5.0 Ma in the lower reversed subchron of the Gilbert, about 2-3 * 10**5 years above the Gilbert/Chron 5 boundary. Oxygen isotopic results from DSDP sites 284, 519, and CH115 piston cores confirm a prolonged benthic d18O increase in the latest Miocene between 5.6 and 5.0 Ma, as originally proposed by Shackleton and Kennett (1975). At DSDP site 588, the benthic d18O record in the latest Miocene is marked by high-frequency fluctuations with amplitude variations of 0.5per mill, and a long-period wavelength component of 400,000 years. Maximum d18O values, however, occurred during the late Miocene (Kapitean Stage) between 5.5 and 5.1 Ma. The late Miocene d18O changes resulted from mid- and high-latitude cooling and pulses of ice sheet expansion and contraction. Glacial events were most intense during the latest Miocene (Kapitean Stage), and occurred at 5.50-5.35 Ma and at 5.10 Ma. Glacial events are estimated to have lowered sea level by 40 to 60 m and contributed to the isolation and desiccation of the Mediterranean Basin during the late Messinian. Interglacial conditions prevailed at 5.2 Ma and between 5.0 and 4.1 Ma in the early Pliocene. The beginning of the Pliocene was marked by changes in many proxy climatic indicators at all sites, suggesting a prolonged interval of warm, interglacial conditions between 5.0 and 4.1 Ma during the earliest Pliocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We improved upper Eocene to Oligocene deep-sea chronostratigraphic control by integrating isotope (87Sr/86Sr, delta18O, delta13C) stratigraphy and magnetostratigraphy. Most previous attempts to establish the timing of isotope fluctuations have relied upon biostratigraphic age estimates which have uncertainties of 0.5 to over 4.0 m.y. Deep Sea Drilling Project (DSDP) Site 522 contains the best available upper Eocene to Oligocene magnetostratigraphic record which allows first-order correlations of isotope records (87Sr/86Sr, delta18O, delta13C) to the Geomagnetic Polarity Time Scale (GPTS). Empirical calibrations between the 87Sr/86Sr of foraminifera and magnetochronology at Site 522 allow more precise correlation of ,unknown' samples with the GPTS. For example, shallow water and high-latitude sections may be tied into the deep-sea record. Sr-isotope stratigraphic resolution for the latest Eocene to Oligocene is approximately 2 m.y.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Holes 603C and 604 of DSDP Leg 93 were drilled on the western Atlantic continental rise at water depths of 4633 m and 2364 m, respectively. In Hole 603C, a nearly continuous, undisturbed, and complete section of Pliocene and lower Pleistocene sediments was recovered by hydraulic piston coring; in Hole 604, a section of uppermost Miocene to Pleistocene sediments was incompletely recovered by rotary coring. In order to reconstruct the Pliocene and Pleistocene history of isotopic variations, 139 oxygen and carbon isotope values were determined for planktonic and monospecific benthic foraminifer samples from these holes. Large parts of the Pleistocene history could not, however, be documented because sample intervals were large and sediments at Site 604 were redeposited. Time correlation is based on magnetostratigraphic (Hole 603C) and micropaleontologic (Hole 603C, Site 604) interpretation. Stable isotope analyses were carried out on the planktonic foraminiferal species Globigerinoides ruber, G. obliquus, and Globorotalia inflata from Hole 603C (48 analyses) and from Site 604 (48 analyses); at Site 604, the benthic foraminifer Uvigerina peregrina (43 analyses) was also studied through the section. Age calibration for Hole 603C is based on the magnetostratigraphy of Canninga et al. (1987; doi:10.2973/dsdp.proc.93.130.1987), which uses the time scale of Lowrie and Alvarez (1981).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural Remanent Magnetization (NRM) was measured for regularly spaced samples from the 620-m-thick, lower middle Eocene to upper Maestrichtian section of DSDP Site 605. The total NRM of the Eocene chalks was too low (5-50 µA/m) to establish a reliable magnetic polarity stratigraphy. However, the results from the somewhat more clayrich Paleocene-upper Maestrichtian section are useful. A fourfold quality classification of the results of progressive demagnetization studies aided in determining the polarity of the original remanence. Two types (1 and 2a) showed a Characteristic Remanent Magnetization (ChRM) direction with reversed and normal polarity, respectively; the third type (2b) can be interpreted as having a reversed ChRM, which could not be cleaned, whereas the fourth type (3) is considered to be unreliable. The Site 605 magnetic polarity stratigraphy compares well with published sections, adding important detail to the correlation with planktonic microfossil zones and, hence, to the resolution of this portion of the time scale (C24-C32 on the Berggren et al., 1985, scale). The Cretaceous/Tertiary boundary occurs in a reversed polarity zone that has been correlated with Subchron C29r. We suspect the presence of an unconformity at the boundary between lithostratigraphic Units Va and IV a location which is also the level of Reflection Horizon A*.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the forcing mechanisms driving long-term carbonate accumulation and preservation in lacustrine sediments in Lake Iznik (northwestern Turkey) since the last glacial. Currently, carbonates precipitate during summer from the alkaline water column, and the sediments preserve aragonite and calcite. Based on X-ray diffraction data, carbonate accumulation has changed significantly and striking reversals in the abundance of the two carbonate polymorphs have occurred on a decadal time scale, during the last 31 ka cal BP. Different lines of evidence, such as grain size, organic matter and redox sensitive elements, indicate that reversals in carbonate polymorph abundance arise due to physical changes in the lacustrine setting, for example, water column depth and lake mixing. The aragonite concentrations are remarkably sensitive to climate, and exhibit millennial-scale oscillations. Extending observations from modern lakes, the Iznik record shows that the aerobic decomposition of organic matter and sulphate reduction are also substantial factors in carbonate preservation over long time periods. Lower lake levels favour aragonite precipitation from supersaturated waters. Prolonged periods of stratification and consequently enhanced sulphate reduction favour aragonite preservation. In contrast, prolonged or repeated exposure of the sediment-water interface to oxygen results in in situ aerobic organic matter decomposition, eventually leading to carbonate dissolution. Notably, the Iznik sediment profile raises the hypothesis that different states of lacustrine mixing lead to selective preservation of different carbonate polymorphs. Thus, a change in the entire lake water chemistry is not strictly necessary to favour the preservation of one polymorph over another.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the western North Atlantic, warm and saline water is brought by the North Atlantic Current (NAC) from the subtropics into the subpolar gyre. Four inverted echo sounders with high precision pressure sensors (PIES) were moored between 47°40' N and 52°30' N to study the main pathways of the NAC from the western into the eastern basin. The array configuration that forms three segments (northern, central, and southern) allows partitioning of the NAC and some assessment of NAC flow paths through the different Mid-Atlantic Ridge fracture zones. We exploit the correlation between the NAC transport measured between 2006 and 2010 and the geostrophic velocity from altimeter data to extend the time series of NAC transports to the period from 1992 to 2013. The mean NAC transport over the entire 21 years is 27 ± 5 Sv, consisting of 60% warm water of subtropical origin and 40% subpolar water. We did not find a significant trend in the total transport time series, but individual segments had opposing trends, leading to a more focused NAC in the central subsection and decreasing transports in the southern and northern segments. The spectral analysis exhibits several significant peaks. The two most prominent are around 120 days, identified as the time scale of meanders and eddies, and at 4-9 years, most likely related to the NAO. Transport composites for the years of highest and lowest NAO indices showed a significantly higher transport (+2.9 Sv) during strong NAO years, mainly in the southern segment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate age models are a tool of utmost important in paleoclimatology. Constraining the rate and pace of past climate change are at the core of paleoclimate research, as such knowledge is crucial to our understanding of the climate system. Indeed, it allows for the disentanglement of the various drivers of climate change. The scarcity of highly resolved sedimentary records from the middle Eocene (Bartonian - Lutetian Stages; 47.8 - 37.8 Ma) has led to the existence of the "Eocene astronomical time scale gap" and hindered the establishment of a comprehensive astronomical time scale (ATS) for the entire Cenozoic. Sediments from the Newfoundland Ridge drilled during Integrated Ocean Drilling Program (IODP) Expedition 342 span the Eocene gap at an unprecedented stratigraphic resolution with carbonate bearing sediments. Moreover, these sediments exhibit cyclic lithological changes that allow for an astronomical calibration of geologic time. In this study, we use the dominant obliquity imprint in XRF-derived calcium-iron ratio series (Ca/Fe) from three sites drilled during IODP Expedition 342 (U1408, U1409, U1410) to construct a floating astrochronology. We then anchor this chronology to numerical geological time by tuning 173-kyr cycles in the amplitude modulation pattern of obliquity to an astronomical solution. This study is one of the first to use the 173-kyr obliquity amplitude cycle for astrochronologic purposes, as previous studies primarily use the 405-kyr long eccentricity cycle as a tuning target to calibrate the Paleogene geologic time scale. We demonstrate that the 173-kyr cycles in obliquity's amplitude are stable between 40 and 50 Ma, which means that one can use the 173-kyr cycle for astrochronologic calibration in the Eocene. Our tuning provides new age estimates for magnetochron reversals C18n.1n - C21r and a stratigraphic framework for key sites from Expedition 342 for the Eocene. Some disagreements emerge when we compare our tuning for the interval between C19r and C20r with previous tuning attempts from the South Atlantic. We therefore present a revision of the original astronomical interpretations for the latter records, so that the various astrochronologic age models for the middle Eocene in the North- and South-Atlantic are consistent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze five high-resolution time series spanning the last 1.65 m.y.: benthic foraminiferal delta18O and delta13O, percent CaCO3, and estimated sea surface temperature (SST) at North Atlantic Deep Sea Drilling Project site 607 and percent CaCO3 at site 609. Each record is a multicore composite verified for continuity by splicing among multiple holes. These climatic indices portray changes in northern hemisphere ice sheet size and in North Atlantic surface and deep circulation. By tuning obliquity and precession components in the delta18O record to orbital variations, we have devised a time scale (TP607) for the entire Pleistocene that agrees in age with all K/Ar-dated magnetic reversals to within 1.5%. The Brunhes time scale is taken from Imbrie et al. [1984], except for differences near the stage 17/16 transition (0.70 to 0.64 Ma). All indicators show a similar evolution from the Matuyama to the Brunhes chrons: orbital eccentricity and precession responses increased in amplitude; those at orbital obliquity decreased. The change in dominance from obliquity to eccentricity occurred over several hundred thousand years, with fastest changes around 0.7 to 0.6 Ma. The coherent, in-phase responses of delta18O, delta13O, CaCO3 and SST at these rhythms indicate that northern hemisphere ice volume changes have controlled most of the North Atlantic surface-ocean and deep-ocean responses for the last 1.6 m.y. The delta13O, percent CaCO3, and SST records at site 607 also show prominent changes at low frequencies, including a prominent long-wavelength oscillation toward glacial conditions that is centered between 0.9 and 0.6 Ma. These changes appear to be associated neither with orbital forcing nor with changes in ice volume.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dataset characterizes the evolution of western African precipitation indicated by marine sediment geochemical records in comparison to transient simulations using CCSM3 global climate model throughout the Last Interglacial (130-115 ka). It contains (1) defined tie-points (age models), newly published stable isotopes of benthic foraminifera and Al/Si log-ratios of eight marine sediment cores from the western African margin and (2) annual and seasonal rainfall anomalies (relative to pre-industrial values) for six characteristic latitudinal bands in western Africa simulated by CCSM3 (two transient simulations: one non-accelerated and one accelerated experiment).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dust can affect the radiative balance of the atmosphere by absorbing or reflecting incoming solar radiation and it can be a source of micronutrients, such as iron, to the ocean. It has been suggested that production, transport, and deposition of dust is influenced by climatic changes on glacial-interglacial timescales. Here we present a high-resolution aeolian dust record from the EPICA Dome C ice core in East Antarctica, which provides an undisturbed climate sequence over the last eight climatic cycles. We find that there is a significant correlation between dust flux and temperature records during glacial periods that is absent during interglacial periods. Our data suggests that dust flux is increasingly correlated with Antarctic temperature as climate becomes colder. We interpret this as progressive coupling of Antarctic and lower latitudes climate. Limited changes in glacial-interglacial atmospheric transport time Mahowald et al. (1999, doi:10.1029/1999JD900084), Jouzel et al. (2007, doi:10.1126/science.1141038), and Werner et al. (2002, doi:10.1029/2002JD002365) suggest that the sources and lifetime of dust are the major factors controlling the high glacial dust input. We propose that the observed ~25-fold increase in glacial dust flux over all eight glacial periods can be attributed to a strengthening of South American dust sources, together with a longer atmospheric dust particle life-time in the upper troposphere resulting from a reduced hydrological cycle during the ice ages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of distinct assemblages containing a high level of regional endemic species. Species richness was most strongly positively associated with the historical climatic conditions and negatively associated with severity of recent disturbance (treefalls) and current climatic conditions. Assemblage composition was associated with latitude and current and historical climatic conditions. Our results suggest that distributional patterns of flightless ground beetles are not only likely to be associated with factors that change with elevation (current climatic conditions), but also factors that are independent of elevation (recent disturbance and historical climatic conditions). Variation in historical vegetation stability explained both species richness and assemblage composition patterns, probably reflecting the significance of upland refugia at a geographic time scale. These findings are important for conservation management as upland habitats are under threat from climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 167 represents the first time since 1978 that the North American Pacific margin was drilled to study ocean history. More than 7500 m of Quaternary to middle Miocene (14 Ma) sediments were recovered from 13 sites, representing the most complete stratigraphic sequence on the California margin. Diatoms are found in most samples in variable abundance and in a moderately well-preserved state throughout the sequence, and they are often dominated by robust, dissolution-resistant species. The Neogene North Pacific diatom zonation of Yanagisawa and Akiba (1998, doi:10.5575/geosoc.104.395) best divides the Miocene to Quaternary sequences, and updated ages of diatom biohorizons estimated based on the geomagnetic polarity time scale of Cande and Kent (1995, doi:10.1029/94JB03098) are slightly revised to adjust the differences between the other zonations. Most of the early middle Miocene through Pleistocene diatom datum levels that have been proven to be of stratigraphic utility in the North Pacific appear to be nearly isochronous within the level of resolution constrained by sample spacing. The assemblages are characterized by species typical of middle-to-high latitudes and regions of high surface-water productivity, predominantly by Coscinodiscus marginatus, Stephanopyxis species, Proboscia barboi, and Thalassiothrix longissima. Latest Miocene through Pliocene assemblages in the region of the California Current, however, are intermediate between those of subarctic and subtropical areas. As a result, neither the existing tropical nor the subarctic (high latitude) zonal schemes were applicable for this region. An interval of pronounced diatom dissolution detected throughout the Pliocene sequence apparently correspond to a relatively warmer paleoceanographic condition resulting in a slackening of the southward flow of the California Current.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of well-dated pollen diagrams in Europe has increased considerably over the last 30 years and many of them have been submitted to the European Pollen Database (EPD). This allows for the construction of increasingly precise maps of Holocene vegetation change across the continent. Chronological information in the EPD has been expressed in uncalibrated radiocarbon years, and most chronologies to date are based on this time scale. Here we present new chronologies for most of the datasets stored in the EPD based on calibrated radiocarbon years. Age information associated with pollen diagrams is often derived from the pollen stratigraphy itself or from other sedimentological information. We reviewed these chronological tie points and assigned uncertainties to them. The steps taken to generate the new chronologies are described and the rationale for a new classification system for age uncertainties is introduced. The resulting chronologies are fit for most continental-scale questions. They may not provide the best age model for particular sites, but may be viewed as general purpose chronologies. Taxonomic particularities of the data stored in the EPD are explained. An example is given of how the database can be queried to select samples with appropriate age control as well as the suitable taxonomic level to answer a specific research question.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paleomagnetic studies on sediments recovered during Leg 136 have yielded a polarity reversal sequence that can be compared with the global magnetic reversal time scale to establish a sedimentation rate for Hole 842B. This sedimentation rate is substantially higher than that normally observed in the central Pacific basin probably as a result of the contribution of volcanic ash to the normal pelagic sources of sediment. The basalt samples from the oceanic crust at Site 843 have been used to determine a paleolatitude of 10.2°S for the 110±2 m.y.-old crust from this site. Detailed studies of the polarity transitions yielded few intermediate directions, but these few records provide support for the "Americas" transitional path observed at other continental and marine sites in Europe and North America.