86 resultados para Railroads, Elevated.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing atmospheric CO2 equilibrates with surface seawater, elevating the concentration of aqueous hydrogen ions. This process, ocean acidification, is a future and contemporary concern for aquatic organisms, causing failures in Pacific oyster (Crassostrea gigas) aquaculture. This experiment determines the effect of elevated pCO2 on the early development of C. gigas larvae from a wild Pacific Northwest population. Adults were collected from Friday Harbor, Washington, USA (48°31.7' N, 12°1.1' W) and spawned in July 2011. Larvae were exposed to Ambient (400 µatm CO2), MidCO2 (700 µatm), or HighCO2 (1,000 µatm). After 24 h, a greater proportion of larvae in the HighCO2 treatment were calcified as compared to Ambient. This unexpected observation is attributed to increased metabolic rate coupled with sufficient energy resources. Oyster larvae raised at HighCO2 showed evidence of a developmental delay by 3 days post-fertilization, which resulted in smaller larvae that were less calcified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near-ambient conditions of irradiance, at ambient or elevated temperature (+3 °C), and at ambient (ca. 400 µatm) or elevated pCO2 (ca. 700 µatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade-off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification is anticipated to decrease calcification and increase dissolution of shelled molluscs. Molluscs with thinner and weaker shells may be more susceptible to predation, but not all studies have measured negative responses of molluscs to elevated pCO2. Recent studies measuring the response of molluscs have found greater variability at the population level than first expected. Here we investigate the impact of acidification on the predatory whelk Morula marginalba and genetically distinct subpopulations of the Pacific oyster Crassostrea gigas. Whelks and eight family lines of C. gigas were separately exposed to ambient (385 ppm) and elevated (1000 ppm) pCO2 for 6 weeks. Following this period, individuals of M. marginalba were transferred into tanks with oysters at ambient and elevated pCO2 for 17 days. The increase in shell height of the oysters was on average 63% less at elevated compared to ambient pCO2. There were differences in shell compression strength, thickness, and mass among family lines of C. gigas, with sometimes an interaction between pCO2 and family line. Against expectations, this study found increased shell strength in the prey and reduced shell strength in the predator at elevated compared to ambient pCO2. After 10 days, the whelks consumed significantly more oysters regardless of whether C. gigas had been exposed to ambient or elevated CO2, but this was not dependent on the family line and the effect was not significant after 17 days. Our study found an increase in predation after exposure of the predator to predicted near-future levels of estuarine pCO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification (OA) and anthropogenic noise are both known to cause stress and induce physiological and behavioural changes in fish, with consequences for fitness. OA is also predicted to reduce the ocean's capacity to absorb low-frequency sounds produced by human activity. Consequently, anthropogenic noise could propagate further under an increasingly acidic ocean. For the first time, this study investigated the independent and combined impacts of elevated carbon dioxide (CO2) and anthropogenic noise on the behaviour of a marine fish, the European sea bass (Dicentrarchus labrax). In a fully factorial experiment crossing two CO2 levels (current day and elevated) with two noise conditions (ambient and pile driving), D. labrax were exposed to four CO2/noise treatment combinations: 400 µatm/ambient, 1000 µatm/ambient, 400 µatm/pile-driving, and 1000 µatm/pile driving. Pile-driving noise increased ventilation rate (indicating stress) compared with ambient noise conditions. Elevated CO2 did not alter the ventilation rate response to noise. Furthermore, there was no interaction effect between elevated CO2 and pile-driving noise, suggesting that OA is unlikely to influence startle or ventilatory responses of fish to anthropogenic noise. However, effective management of anthropogenic noise could reduce fish stress, which may improve resilience to future stressors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 µatm) and temperature (18 °C). Isolated perfused gill preparations established to determine gill thermal plasticity during acute exposures (10-22 °C) and in vivo costs of Na+/K+-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H+-ATPase and Na+/K+-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na+/K+-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na+/K+-ATPase, which remained unchanged under elevated CO2 at 10 °C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na+/K+ATPase and H+-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing number of studies have examined the effects of elevated carbon dioxide (CO2) and ocean acidification on marine fish, yet little is known about the effects on large pelagic fish. We tested the effects of elevated CO2 on the early life history development and behaviour of yellowtail kingfish, Seriola lalandi. Eggs and larvae were reared in current day control (450 µatm) and two elevated CO2 treatments for a total of 6 d, from 12 h post-fertilization until 3 d post-hatching (dph). Elevated CO2 treatments matched projections for the open ocean by the year 2100 under RCP 8.5 (880 µatm CO2) and a higher level (1700 µatm CO2) relevant to upwelling zones where pelagic fish often spawn. There was no effect of elevated CO2 on survival to hatching or 3 dph. Oil globule diameter decreased with an increasing CO2 level, indicating potential effects of elevated CO2 on energy utilization of newly hatched larvae, but other morphometric traits did not differ among treatments. Contrary to expectations, there were no effects of elevated CO2 on larval behaviour. Activity level, startle response, and phototaxis did not differ among treatments. Our results contrast with findings for reef fish, where a wide range of sensory and behavioural effects have been reported. We hypothesize that the absence of behavioural effects in 3 dph yellowtail kingfish is due to the early developmental state of newly hatched pelagic fish. Behavioural effects of high CO2 may not occur until larvae commence branchial acid-base regulation when the gills develop; however, further studies are required to test this hypothesis. Our results suggest that the early stages of kingfish development are tolerant to rising CO2 levels in the ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Juvenile colonies of massive Porites spp. were exposed to manipulated pH and bicarbonate ([HCO3-]) in situ to test the hypothesis that ocean acidification (OA) does not affect respiration and calcification. Incubations lasted 28 h and exposed corals to ambient temperature and light with ecologically relevant water motion. Three treatments were applied: (1) ambient conditions of pH 8.04 and 1751 µmol HCO3- kg(-1) (Treatment 1), (2) pCO2-induced ocean acidification of pH 7.73 and 2011 µmol HCO3- kg(-1) (Treatment 2), and (3) pCO2 and HCO3--enriched seawater of pH 7.69 and 2730 µmol HCO3- kg(-1) (Treatment 3). The third treatment providing elevated [HCO3-] was used to test for stimulatory effects of dissolved inorganic carbon on calcification under low pH and low saturation of aragonite (Omega arag), but it does not reflect conditions expected to occur under CO2-driven OA. Calcification of juvenile massive Porites spp. was affected by treatments, with an 81% elevation in Treatment 3 versus Treatment 1, but no difference between Treatments 1 and 2; respiration and the metabolic expenditure concurrent with calcification remained unaffected. These findings indicate that juvenile massive Porites spp. are resistant to short exposures to OA in situ, and separately, that they can increase calcification at low pH and low Omega arag if [HCO3-] is elevated. Juvenile Porites spp. may therefore be limited by dissolved inorganic carbon under ambient pCO2 conditions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental ocean acidification leads to a shift in resource allocation and to an increased [HCO3-] within the perivisceral coelomic fluid (PCF) in the Baltic green sea urchin Strongylocentrotus droebachiensis. We investigated putative mechanisms of this pH compensation reaction by evaluating epithelial barrier function and the magnitude of skeleton (stereom) dissolution. In addition, we measured ossicle growth and skeletal stability. Ussing chamber measurements revealed that the intestine formed a barrier for HCO3- and was selective for cation diffusion. In contrast, the peritoneal epithelium was leaky and only formed a barrier for macromolecules. The ossicles of 6 week high CO2-acclimatised sea urchins revealed minor carbonate dissolution, reduced growth but unchanged stability. On the other hand, spines dissolved more severely and were more fragile following acclimatisation to high CO2. Our results indicate that epithelia lining the PCF space contribute to its acid-base regulation. The intestine prevents HCO3- diffusion and thus buffer leakage. In contrast, the leaky peritoneal epithelium allows buffer generation via carbonate dissolution from the surrounding skeletal ossicles. Long-term extracellular acid-base balance must be mediated by active processes, as sea urchins can maintain relatively high extracellular [HCO3-]. The intestinal epithelia are good candidate tissues for this active net import of HCO3- into the PCF. Spines appear to be more vulnerable to ocean acidification which might significantly impact resistance to predation pressure and thus influence fitness of this keystone species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in calcification of coccolithophores may affect their photosynthetic responses to both, ultraviolet radiation (UVR, 280-400 nm) and temperature. We operated semi-continuous cultures of Emiliania huxleyi (strain CS-369) at reduced (0.1 mM, LCa) and ambient (10 mM, HCa) Ca2+ concentrations and, after 148 generations, we exposed cells to six radiation treatments (>280, >295, >305, >320, >350 and >395 nm by using Schott filters) and two temperatures (20 and 25 °C) to examine photosynthesis and calcification responses. Overall, our study demonstrated that: (1) decreased calcification resulted in a down regulation of photoprotective mechanisms (i.e., as estimated via non-photochemical quenching, NPQ), pigments contents and photosynthetic carbon fixation; (2) calcification (C) and photosynthesis (P) (as well as their ratio) have different responses related to UVR with cells grown under the high Ca2+ concentration being more resistant to UVR than those grown under the low Ca2+ level; (3) elevated temperature increased photosynthesis and calcification of E. huxleyi grown at high Ca2+concentrations whereas decreased both processes in low Ca2+ grown cells. Therefore, a decrease in calcification rates in E. huxleyi is expected to decrease photosynthesis rates, resulting in a negative feedback that further reduces calcification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated temperatures associated with ocean warming and acidification can influence development and, ultimately, success of larval molluscs. The effect of projected oceanic changes on fertilisation and larval development in an Antarctic bivalve, Laternula elliptica, was investigated through successive larval stages at ambient temperature and pH conditions (-1.6°C and pH 7.98) and conditions representative of projections through to 2100 (-0.5°C to +0.4°C and pH 7.80 to pH 7.65). Where significant effects were detected, increased temperature had a consistently positive influence on larval development, regardless of pH level, while effects of reduced pH varied with larval stage and incubation temperature. Fertilisation was high and largely independent of stressors, with no loss of gamete viability. Mortality was unaffected at all development stages under experimental conditions. Elevated temperatures reduced occurrences of abnormalities in D-larvae and accelerated larval development through late veliger and D-larval stages, with D-larvae occurring 5 d sooner at 0.4°C compared to ambient temperature. Reduced pH did not affect occurrences of abnormalities in larvae, but it slowed the development of calcifying stages. More work is required to investigate the effects of developmental delays of the magnitude seen here in order to better determine the ecological relevance of these changes on longer term larval and juvenile success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypoxia and ocean acidification are two consequences of anthropogenic activities. These global trends occur on top of natural variability. In environments such as estuarine areas, short-term acute pH and O2 fluctuations are occurring simultaneously. The present study tested the combined effects of short-term seawater acidification and hypoxia on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were exposed for 72 h to six combined treatments with three pH levels (8.1, 7.7 and 7.3) and two dissolved oxygen (DO) levels (2 mg/L, 6 mg/L). Clearance rate (CR), food absorption efficiency (AE), respiration rate (RR), ammonium excretion rate (ER), O:N ratio and scope for growth (SFG) were significantly reduced, and faecal organic dry weight ratio (E) was significantly increased at low DO. Low pH did not lead to a reduced SFG. Interactive effects of pH and DO were observed for CR, E and RR. Principal component analysis (PCA) revealed positive relationships among most physiological indicators, especially between SFG and CR under normal DO conditions. These results demonstrate that Mytilus coruscus was sensitive to short-term (72 h) exposure to decreased O2 especially if combined with decreased pH levels. In conclusion, the short-term oxygen and pH variation significantly induced physiological changes of mussels with some interactive effects.