111 resultados para Pressurized components
Resumo:
The amount of lead annually transferred from oceanic crust to metalliferous sediments was estimated in order to test the hypothesis that a non-magmatic flux of lead causes the Pb surplus in the continental crust. A Pb surplus has been inferred from global crust-mantle lead mass balances derived from lead concentration correlations with other trace elements and from lead isotope systematics in oceanic basalts. DSDP/ODP data on the amount of metalliferous sediments in the Pacific Ocean and along a South Atlantic traverse are used to calculate the mean worldwide thickness of 3 (+/-1) m for purely metalliferous sediment componens. Lead isotope ratios of 39 metalliferous sediments from the Pacific define mixing lines between continent-derived (seawater) and mantle-derived (basaltic) lead, with the most metal-rich sediments usually having the most mantle-like Pb isotope composition. We used this isotope correlation and the Pb content of the 39 metalliferous sediments to derive an estimate of 130 (+/-70) µg/g for the concentration of mantle-derived lead in the purely metalliferous end-member. Mass balance calculations show that at least 12 (+/-8)% of the lead, annually transferred from upper mantle to oceanic crust at the ocean ridges, is leached out by hydrothermal processes and re-deposited in marine sediments. If all of the metalliferous lead is ultimately transferred to the continental crust during subduction, the annual flux of this lead from mantle to continental crust is 2.6 (+/-2.0) * 10**6 kg. Assuming this transfer rate to be proportional to the rate of oceanic plate production, one can fit the lead transfer to models of plate production rate variations through time. Integrating over 4 Ga, hydrothermal lead transfer to the continental crust accounts for a significant portion of the Pb surplus in the continental crust. It therefore appears to be one of the main reasons for the anomalous behavior of lead in the global crust-mantle system.
Resumo:
Two newly developed coring devices, the Multi-Autoclave-Corer and the Dynamic Autoclave Piston Corer were deployed in shallow gas hydrate-bearing sediments in the northern Gulf of Mexico during research cruise SO174 (Oct-Nov 2003). For the first time, they enable the retrieval of near-surface sediment cores under ambient pressure. This enables the determination of in situ methane concentrations and amounts of gas hydrate in sediment depths where bottom water temperature and pressure changes most strongly influence gas/hydrate relationships. At seep sites of GC185 (Bush Hill) and the newly discovered sites at GC415, we determined the volume of low-weight hydrocarbons (C1 through C5) from nine pressurized cores via controlled degassing. The resulting in situ methane concentrations vary by two orders of magnitudes between 0.031 and 0.985 mol kg**-1 pore water below the zone of sulfate depletion. This includes dissolved, free, and hydrate-bound CH4. Combined with results from conventional cores, this establishes a variability of methane concentrations in close proximity to seep sites of five orders of magnitude. In total four out of nine pressure cores had CH4 concentrations above equilibrium with gas hydrates. Two of them contain gas hydrate volumes of 15% (GC185) and 18% (GC415) of pore space. The measurements prove that the highest methane concentrations are not necessarily related to the highest advection rates. Brine advection inhibits gas hydrate stability a few centimeters below the sediment surface at the depth of anaerobic oxidation of methane and thus inhibits the storage of enhanced methane volumes. Here, computerized tomography (CT) of the pressure cores detected small amounts of free gas. This finding has major implications for methane distribution, possible consumption, and escape into the bottom water in fluid flow systems related to halokinesis.
Resumo:
A planktonic foraminiferal fauna of probable late Aptian age is recorded in Cores 113-693A-47R and -48R, located on the Antarctic continental margin. Moderate to highly productive surface waters and upper bathyal paleodepths are inferred from benthic and planktonic foraminifers, and other biotic and mineral components in the >63 µm size fraction.
Resumo:
Aerosol samples collected over the North Atlantic from ship were analysed for Sodium, Magnesium, Potassium, Calcium and Chloride. A found dependence of sea salt concentrations from wind velocity is compared with earlier results. The mean of the ratio Cl/Na was close to that for sea water; the Mg-, K- and Ca-concentrations in the aerosol, however, were enriched with respect to sea water. It is shown that continental advection influences the measured aerosol components over the North Atlantic.
Resumo:
Site 536 terminated in a shallow-water dolomite of unknown age. Paleomagnetic measurements combined with strontium isotope analyses suggest that the dolomite was deposited in the Middle Jurassic to Early Cretaceous time interval. However, the assumptions required to reach this determination make these results less than conclusive.
Resumo:
We have analyzed 33 Pliocene bulk sediment samples from Ocean Drilling Program Site 1085 in the Cape Basin, located offshore of western Africa in the Angola-Benguela Current system, for 17 major and trace elements, and interpreted their associations and temporal variations in the context of an allied data set of CaCO3, opal, and Corg. We base our interpretations on elemental ratios, accumulation rates, inter-element correlations, and several multi-element statistical techniques. On the basis of qualitative assessment of downhole changes in the distributions of P and Ba, utilized as proxies of export production, we conclude that highs in bulk and biogenic accumulation that occur at 3.2 Ma, 3.0 Ma, 2.4 Ma, and 2.25 Ma were caused by increases in export production as well as terrigenous flux, and record a greater sequestering of organic matter during these time periods. Studies of refractory elements and other indicator proxies (SiO2, Al2O3, TiO2, Fe2O3, MgO, V, Cr, Sr, and Zr) strongly suggest that the terrigenous component of the bulk sediment is composed of two compositional end-members, one being 'basaltic' in composition and the other similar to an 'average shale'. The basaltic end-member comprises approximately 10-15% of the total bulk sediment and its presence is consistent with the local geology of source material in the drainage basin of the nearby Orange River. The increase in bulk accumulation at 2.4 Ma appears to reflect a greater relative increase in basaltic input than the relative increase in shale-type input. Although studies such as this cannot precisely identify the transport mechanisms of the different terrigenous components, these results are most consistent with variations in sea level (and associated changes in shelf geometry and fluvial input) being responsible for the changing depositional conditions along the Angolan Margin during this time period.