511 resultados para Pleistocene fossil reefs
Resumo:
Stable isotopic data obtained from planktonic and benthic foraminifers were used to study paleoceanographic changes along the northeastern Australian margin from late Miocene (10 Ma) to Holocene time, and to evaluate the influence of these changes on reef growth. The data indicate that variations in surface-water temperatures may have had an important effect on the reef complexes on the Queensland Plateau and possibly off the northeastern Australian margin. Three sites were studied: Leg 21, Site 209 on the eastern edge of the Queensland Plateau, and Leg 133, Site 811 on the western margin, and Site 817 on the lower southern slope of the plateau. Shallow-water bioclasts recovered from Holes 811A and 817A indicate extensive reef growth on the Queensland Plateau during the middle Miocene (before 12 Ma), signifying surface-water temperatures of 20°C or greater. The amount of reefal detritus produced during the late Miocene (10.0-5.2 Ma) decreased progressively, resulting in a reduction in area of the reef complexes. The isotopic data from planktonic foraminifers in these late Miocene age sediments indicate the presence of relatively cool surface waters (16°-19°C), which may have been a major factor contributing to the demise of the reefs on the Queensland Plateau. Surface waters remained cool until the middle Pleistocene (1.2-0.5 Ma), when the surface-water temperature apparently increased to approximately 25°C, recorded both in the isotopic data and by renewed reef growth. This increase occurred simultaneously (within the error of the age model) with the initiation of the Great Barrier Reef. We propose that cooling of surface waters during the early late Miocene contributed to reef decline on the Queensland Plateau, and that subsequent warming of surface waters during the middle Pleistocene promoted the initiation of reef growth on the northeastern Australian margin. Reef development on the Queensland Plateau never recovered to the middle Miocene extent because of a combination of tectonic (accelerated subsidence of the plateau) and paleoceanographic (the cooler surface waters present from the late Miocene throughout the Pliocene) factors. Variations in seafloor d18O appear to be controlled by regional factors, as indicated by the similarity of data from Sites 811 and 817 to those from Site 590 on Lord Howe Rise.
Resumo:
Coral reefs persist in an accretion-erosion balance and ocean acidification resulting from anthropogenic CO2 emissions threatens to shift this balance in favor of net reef erosion. Corals and calcifying algae, largely responsible for reef accretion, are vulnerable to environmental changes associated with ocean acidification, but the direct effects of lower pH on reef erosion has received less attention, particularly in the context of known drivers of bioerosion and natural variability. This study examines the balance between reef accretion and erosion along a well-characterized natural environmental gradient in Kane'ohe Bay, Hawai'i using experimental blocks of coral skeleton. Comparing before and after micro-computed tomography (µCT) scans to quantify net accretion and erosion, we show that, at the small spatial scale of this study (tens of meters), pH was a better predictor of the accretion-erosion balance than environmental drivers suggested by prior studies, including resource availability, temperature, distance from shore, or depth. In addition, this study highlights the fine-scale variation of pH in coastal systems and the importance of microhabitat variation for reef accretion and erosion processes. We demonstrate significant changes in both the mean and variance of pH on the order of meters, providing a local perspective on global increases in pCO2. Our findings suggest that increases in reef erosion, combined with expected decreases in calcification, will accelerate the shift of coral reefs to an erosion-dominated system in a high-CO2 world. This shift will make reefs increasingly susceptible to storm damage and sea-level rise, threatening the maintenance of the ecosystem services that coral reefs provide.
Resumo:
Abundance records of planktonic foraminifera (>150 µm) from the upper 520 m of ODP Site 1073 (Hole 1073A, Leg 174A, 639 m water depth) have been integrated with SPECMAP-derived isotope stratigraphy, percentage of calcium carbonate, and coarse sediment fraction data in order to investigate the Pleistocene climatic history of the New Jersey margin. Six planktonic taxonomic groups dominate the foraminiferal assemblage at Site 1073: Neogloboquadrina pachyderma (d) (mean 33.8%), Turborotalita quinqueloba (18.5%), N. pachyderma (s) (18.4%), Globigerina bulloides group (11.4%), Globorotalia inflata group (9.4%), and Globigerinita glutinata (4.1%). Based on the distributions of these six foraminiferal groups, the Pleistocene section can be divided into three paleoclimatic intervals: Interval I (intermediate) corresponds to the Quaternary sediments from sequence boundary pp1 to the seafloor (79.5-0 mbsf; Emiliania huxleyi acme [85 ka] at 72 mbsf); Interval II (warm) occurs between sequence boundaries pp3 and pp1 (325-79.5 mbsf; last occurrence of Pseudoemiliania lacunosa [460 ka] at 330 mbsf); and Interval III (coldest) occurs between sequence boundaries pp4 and pp3 (520-325 mbsf; Calcareous nannofossils and dinocysts in proximity to pp4 indicate that the sedimentary record for 0.9-1.7 Ma is either missing altogether or highly condensed within the basal few meters of the section). Neogloboquadrina pachyderma (d) displays eight peaks of abundance which correlate, for the most part, with depleted delta18O values, increases in calcium carbonate percentages, low coarse fraction percentages, increased planktonic fragmentation (greater dissolution), and low N. pachyderma (s) abundances. These intervals are interpreted as representing warmer/interglacial conditions. Neogloboquadrina pachyderma (s) displays seven peaks of abundance which correlate, for the most part, with delta18O increases, decreases in calcium carbonate percentages, increases in coarse fraction percentages, and low N. pachyderma (d) abundances. These intervals are interpreted as representing cooler/glacial conditions. In Interval III, a faunal response to relative changes in sea-surface temperature is reflected by abundance peaks in Neogloboquadrina pachyderma (d), followed by Turborotalita quinqueloba and then N. pachyderma (s) (proceeding from warmest to coolest, respectively). This tripartite response is consistent with the oxygen isotope record and, although not as clear, also occurs in Intervals I and II. Six peaks/peak intervals of Globigerina bulloides abundance are closely matched by peaks in Globigerinita glutinata and occur within oxygen isotope stage (OIS) 2 (latter part) 3, 4, 5, 8, 9, 13(?), 14(?), and 15(?). We speculate that these intervals reflect increased upwelling and nutrient levels during both glacials and interglacials. Eight peak intervals of Globorotalia inflata show a general inverse correlation with G. bulloides and may reflect lowered nutrient and warmer surface waters.
Resumo:
Probable in-situ manganese deposits larger than 1 cm in diameter buried in ODP/DSDP cores were selected for study after examining previous descriptions of the manganese deposits in site reports and the ODP data base. Most of the selected samples from 11 cores occur at or just above sedimentary hiatuses or in slowly deposited sediments and are overlain by rapidly deposited sediments of biogenic, terrigenous or volcanogenic origin. The changes in sedimentation recorded in the lithostratigraphic sections around these deposits are closely related to changes in tectonic evolution, deep water circulation or biological productivity at the sites. The similarity in composition and structure of the buried deposits to those of the modern manganese nodules and crusts with no evidence of post-depositional change suggest that buried manganese deposits may be used as indicators of past sedimentary conditions during which they formed. Their major components are hydrogenetic and earlydiagenetic manganese minerals as well as detrital minerals. The characteristics of these manganese deposits suggests that similar processes of deposition have taken place since the Paleogene or older.
Resumo:
In this study we present combined high-resolution records of sea surface temperature (SST), phytoplankton productivity, and nutrient cycling in the Benguela Upwelling System (BUS) for the past 3.5 Ma. The SST record provided evidence that upwelling activity off Namibia mainly intensified ca. 2.4-2.0 Ma ago in response to the cooling of the Southern Ocean and the resultant strengthening of trade winds. As revealed by productivity-related proxies, BUS intensification led to a major transition in regional biological productivity when considering the termination of the Matuyama Diatom Maximum (a diatom high-production event). Major oceanic reorganization in the Benguela was accompanied by nutrient source changes, as indicated by a new nitrogen isotopic (delta15N) record that revealed a stepwise increase at ca. 2.4 and ca. 1.5 Ma ago. The change in source region likely resulted from significant changes in intermediate water formation tied to the reorganization of oceanic conditions in the Southern Ocean, which may have in turn mainly controlled the global ocean N cycle, and therefore the N isotopic composition of nutrients since 3.5 Ma ago.
Resumo:
Changes in paleoclimate and paleoproductivity patterns have been identified by analysing, in conjunction with other available proxy data, the coccolithophore assemblages from core MD03-2699, located in the Portuguese margin in the time interval from the Marine Isotope Stage (MIS) 13/14 boundary to MIS 9 (535 to 300 ka). During the Mid-Brunhes event, the assemblages associated with the eccentricity minima are characterised by higher nannoplankton accumulation rate (NAR) values and by the blooming of the opportunistic genus Gephyrocapsa. Changes in coccolithophore abundance are also related to glacial-interglacial cycles. Higher NAR and numbers of coccoliths/g mainly occurred during the interglacial periods, while these values decreased during the glacial periods. Superimposed on the glacial/interglacial cycles, climatic and paleoceanographic variability has been observed on precessional timescales. The structure of the assemblages highlights the prevailing long-term influence of the Portugal (PC) and Iberian Poleward (IPC) Currents, following half and full precession harmonics, related to the migration of the Azores High (AH) Pressure System. Small Gephyrocapsa and Coccolithus pelagicus braarudii are regarded as good indicators for periods of prevailing PC influence. Gephyrocapsa caribbeanica, Syracosphaera spp., Rhabdosphaera spp. and Umbilicosphaera sibogae denote periods of IPC influence. Our data also highlights the increased percentages of Coccolithus pelagicus pelagicus during the occurrence of episodes of very cold and low salinity surface water, probably related to abrupt climatic events and millennial-scale oscillations of the AH/Icelandic Low (IL) System.
Resumo:
Quantitative distributions of calcareous nannofossils are analysed in the early-middle Pleistocene at the small Gephyrocapsa and Pseudoemiliania lacunosa zone transition in deep-sea cores from the Mediterranean Sea and North Atlantic Ocean (Ocean Drilling Program [ODP] Sites 977, 964 and 967, Deep Sea Drilling Project [DSDP] Site 607). The temporal and spatial mode of occurrence of medium-sized gephyrocapsids and reticulofenestrids has been examined to refine biostratigraphic constraints and evaluate possible relationships of stratigraphic patterns to environmental changes during a period of global climatic deterioration. The timing of bioevents has been calibrated using high-resolution sampling and correlation to the delta18O record in chronologically well-constrained sections. Newly identified events and ecostratigraphical signals enhance the stratigraphic resolution at the early-middle Pleistocene. The first occurrence (FO) of intermediate morphotypes between Pseudoemiliania and Reticulofenestra (Reticulofenestra sp.) is proposed as a reliable event within marine isotope stage (MIS) 35 or at the MIS 35/34 transition. The distribution of Reticulofenestra asanoi is characterized by rare and scattered occurrences in its lowest range, but the first common occurrence (FCO) is consistently identified at MIS 32 or 32/31; the last common occurrence (LCO) of the species is a distinctive event at MIS 23. In the studied interval, Gephyrocapsa omega dominates among medium-sized Gephyrocapsa. The FO of G. omega and contemporaneous re-entry of medium-sized gephyrocapsids at the lower-middle Pleistocene transition are diachronous between the Atlantic Ocean and Mediterranean Sea and from the western to eastern Mediterranean. In the Mediterranean, the LO of G. omega falls at MIS 15, insolation cycle 54 and is isochronous among the sites. Abundance fluctuations of G. omega show notable relations to early-middle Pleistocene climate changes; they considerably increase in abundance at the interglacial stages, suggesting warm water preferences. Gephyrocapsa omega temporarily disappears during the glacial MIS 22 and MIS 20. Above MIS 20, an impoverishment in G. omega and in the total abundance of medium-sized gephyrocapsids occurs. A decrease in abundance of G. omega is observed between the western Site 977 and the easternmost Site 967 in the Mediterranean Sea, as a possible response to high salinity and/or low nutrient content. Possible environmental influences on the distribution of R. asanoi and of Reticulofenestra sp. are discussed.
Resumo:
Strontium and neodymium radiogenic isotope ratios in early to middle Eocene fossil fish debris (ichthyoliths) from Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302) help constrain water mass compositions in the Eocene Arctic Ocean between 55 and 45 Ma. The inferred paleodepositional setting was a shallow, offshore marine to marginal marine environment with limited connections to surrounding ocean basins. The new data demonstrate that sources of Nd and Sr in fish debris were distinct from each other, consistent with a salinity-stratified water column above Lomonosov Ridge in the Eocene. The 87Sr/86Sr values of ichthyoliths (0.7079 - 0.7087) are more radiogenic than Eocene seawater, requiring brackish to fresh water conditions in the environment where fish metabolized Sr. The 87Sr/86Sr variations probably record changes in the overall balance of river Sr flux to the Eocene Arctic Ocean between 55 and 45 Ma and are used here to reconstruct surface water salinity values. The eNd values of ichthyoliths vary between -5.7 and -7.8, compatible with periodic (or intermittent) supply of Nd to Eocene Arctic intermediate water (AIW) from adjacent seas. Although the Norwegian-Greenland Sea and North Atlantic Ocean were the most likely sources of Eocene AIW Nd, input from the Tethys Sea (via the Turgay Strait in early Eocene time) and the North Pacific Ocean (via a proto-Bering Strait) also contributed.
Resumo:
A close examination of the siliceous microfossil assemblages from the sediments of ODP Leg 127, Japan Sea Sites 794, 795, and 797, reveals that upper Pliocene and Pleistocene assemblages have been subjected to more dissolution than have lower Pliocene assemblages. This conclusion is based on semiquantitative observations of samples processed for diatoms and radiolarians. Although preservation of opaline microfossils in some upper Pliocene and Pleistocene samples is better than others, in general, the poorly preserved state of these assemblages supports the notion that opal dissolution, in response to lowered productivity, is responsible for the paucity of siliceous microfossils in upper Pliocene and Pleistocene sediments. The lithological transition from diatomaceous oozes to silts and clays corresponds to a change between dominantly well preserved to more poorly preserved siliceous assemblages, and is termed the late Pliocene Japan Sea opal dissolution transition zone (ODTZ). The base of the ODTZ is defined as the uppermost occurrence of high abundances of moderately to well preserved valves of the diatom Coscinodiscus marginatus. The dissolution transition zone is characterized by partially dissolved refractory assemblages of radiolarians, the presence of C. marginatus girdles, C. marginatus fragments, siliceous sponge spicules, and a general decrease in weakly silicified, less solution resistant diatoms upward in the section. The top of the dissolution transition zone marks the level where whole C. marginatus valves and C. marginatus fragments are no longer present in significant numbers. Dissolution of the late Pliocene and Pleistocene opaline assemblages is attributed mainly to changes in paleoceanographic circulation patterns and decreased nutrient (dissolved silicon) contents of the water column, and possibly dissolution at the sediment/water interface, rather than to post-depositional dissolution or diagenesis. We suggest that the transition from silica-rich to silica-poor conditions in the Japan Sea was due to fluctuations of deep-water exchange with the Pacific through the Tsugaru Strait between 2.9 and 2.3 Ma.
Resumo:
Ocean Drilling Program (ODP) Leg 114 recovered nannofossil-bearing sediments from seven sites in the high latitudes of the South Atlantic Ocean. Cretaceous sections were recovered from Sites 698 and 700, located on the Northeast Georgia Rise and its lower flanks, respectively. These contain distinctive high-latitude nannofossil floras similar to those from high-latitude areas of the Northern Hemisphere. Most of the biostratigraphic datums used to date the upper Campanian to Maestrichtian interval appear to lie at approximately the same level in both hemispheres. The FAD of Nephrolithus frequens is confirmed to be diachronous with an earlier occurrence in high latitudes. The LAD of Monomarginatus primus n. sp. also appears to be diachronous with a later LAD in the high latitudes of the Southern Hemisphere. Fossiliferous Paleocene to lowermost Miocene sediments were recovered at all seven sites, from the Northeast Georgia Rise in the west to the Meteor Rise in the east. These nannofossil floras, although restricted in diversity and only poorly preserved, are sufficiently distinctive to allow the recognition of 19 zones and three subzones, which are used to date and correlate the cores recovered. Only Site 704 on the Meteor Rise yielded a substantial section of Miocene to Quaternary nannofossil-rich sediments. The nannofossil floras of this section are of very low diversity, with usually fewer than eight species present. Some stratigraphic ranges of important biostratigraphic datum species are observed to be different in the high-latitude sections from those recorded from low-latitude areas. The LAD of Reticulofenestra bisecta, when calibrated by magnetostratigraphy, appears to occur earlier in Hole 699A (within Chron C6CR) than in Hole 703A and possibly Hole 704B and in other published accounts of lower latitude sites in the South Atlantic. The FAD of Nannotetrina fulgens/N. cristata appears to occur later in Hole 702B (Chron C20R) than it does in other published accounts of lower latitude sites in the South Atlantic. Diachroneity is also suspected in the stratigraphic ranges of Chiasmolithus solitus and Chiasmolithus oamaruensis, although poor magnetostratigraphic results through the critical interval prevent confirmation of this. Differences in the relative stratigraphic ranges of lsthmolithus recurvus and Cribrocentrum coenurumlC. reticulatum at Sites 699 and 703 are noted. These possibly suggest warmer surface waters on the eastern side (Site 703) of the middle to late Eocene South Atlantic than those on the western side (Site 699). The diversities of the nannofossil floras and the presence of the warm-water genera Discoaster, Sphenolithus, Helicosphaera, and Amaurolithus reflect the changing surface water temperatures throughout the Cenozoic. Warmer periods are inferred for the late Paleocene to early middle Eocene, late middle Eocene to late Eocene, latest Oligocene to earliest Miocene, and possibly the Pliocene. Colder periods are inferred for the middle Eocene, most of the Oligocene, and the Miocene. Dramatic changes in the nannofossil floras of the Pleistocene of Site 704 are thought to reflect a rapidly changing environment. Monomarginatus primus, a new species from the Upper Cretaceous strata of Hole 700B, is described.
Resumo:
Quaternary sedimentation within the Japan Sea was controlled by the configuration of peripheral sills, seasonal and long-term climatic variability, and the resultant fluctuations in sea level (Tamaki, 1988). Prior to drilling in the area, piston cores recovered from its basins contained Pleistocene sediments having distinctive color and fabric variation. Sedimentological and geochemical studies conducted on those facies indicated that the variability in fabric was the result of fluctuating marine and/or terrigenous influx to the deep-water basins of the Japan Sea (see, for example, Chough, 1984; Matoba, 1984). The sequences recovered during Leg 127 at Sites 794, 795, and 797 contain long, virtually undisturbed sequences (92.3, 123, and 119.9 mbsf [Hole 797B], respectively) of upper Miocene, upper Pliocene, and Pleistocene/Holocene sediments. The majority of these sequences consists of dark-colored (dark brown, green, and black) silty-clays, many of which are enriched in biogenic components (majority silicious, some carbonate) and/or organic matter, some containing pyrite and/or ash. These facies alternate with light-colored silty-clays, some containing ash and some showing signs of bioturbation (for example, Tamaki, Pisciotto, Allan, et al., 1990, p. 425-433). The dark-to-light sequences are present throughout the section, although they are especially dominant throughout the Pleistocene (for a more detailed lithology of Quaternary sequences recovered at Sites 794, 795, and 797, see Follmi et al. 1992 and Tada et al., 1992). This data report provides trace metal information on Pliocene-Pleistocene-Holocene samples at Sites 794,795, and 797. These data can be used (1) to provide information related to the depositional environments of the Japan Sea during the Quaternary period, (2) to permit comparisons between the dark organic-rich sediments recovered from this semi-enclosed basin and those reported for other silled basins (for example, the Mediterranean and Black seas), and (3) to permit comparisons between these sediments and contemporary equivalents found, for instance, beneath areas of high biogenic productivity. By providing such data, one should be able (1) to determine more precisely the processes governing the deposition of sediments with various levels of organic matter within enclosed basins, (2) to compare individual basin-wide processes, (3) to look for and compare the signatures present as a result of climatic fluctuation, and (4) to attempt to identify the presence and/or absence of cyclicity within such sequences.
Resumo:
We generated benthic isotope records from Ocean Drilling Program (ODP) site 981 on the Feni drift (2173 m water depth) and from ODP site 983 on the Gardar drift (1983 m water depth) to examine the interaction between North Atlantic Deep Water (NADW) and Glacial North Atlantic Intermediate Water (GNAIW) formation from 2.0 to 1.4 Ma. We find NADW at both sites during interglacial periods, and a mix of NADW and Southern Ocean water at the Feini drift during most glacial periods. Prior to 1.7 Ma we find no evidence ofr GNAIW at the Gardar drift site. Instead, glacial Gardar drift delta13C values are as low or lower than values for all other sites in the North Atlantic and reflect continued glacial overflow from the Nordic seas. After 1.7 Ma Gardar drift delta13C values increase and suggest that there was GNAIW at the Gardar drift site during some glacial intervals. Overall, we find that NADW and GNAIW production changed around 1.7 Ma in concert with changes in sea surface temperature and salinity and in the Earth's obliquity cycle.