165 resultados para Planetary Science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Sr and Nd isotopic composition of dust extracted from recent snow layers at the top of Berkner Island ice sheet (located within the Filchner-Ronne Ice Shelf at the southern end of the Weddell Sea) enables us, for the first time, to document dust provenance in Antarctica outside the East Antarctic Plateau (EAP) where all previous studies based on isotopic fingerprinting were carried out. Berkner dust displays an overall crust-like isotopic signature, characterized by more radiogenic 87Sr/86Sr and much less radiogenic 143Nd/144Nd compared to dust deposited on the EAP during glacial periods. Differences with EAP interglacial dust are not as marked but still significant, indicating that present-day Berkner dust provenance is distinct, at least to some extent, from that of the dust reaching the EAP. The fourteen snow-pit sub-seasonal samples that were obtained span a two-year period (2002-2003) and their dust Sr and Nd isotopic composition reveals that multiple sources are at play over a yearly time period. Southern South America, Patagonia in particular, likely accounts for part of the observed spring/summer dust deposition maxima, when isotopic composition is shifted towards 'younger' isotopic signatures. In the spring, possible additional inputs from Australian sources would also be supported by the data. Most of the year, however, the measured isotopic signatures would be best explained by a sustained background supply from putative local sources in East Antarctica, which carry old-crust-like isotopic fingerprints. Whether the restricted East Antarctic ice-free areas produce sufficient eolian material has yet to be substantiated however. The fact that large (> 5 µm) particles represent a significant fraction of the samples throughout the entire time-series supports scenarios that involve contributions from proximal sources, either in Patagonia and/or Antarctica (possibly including snow-free areas in the Antarctic Peninsula and other areas as well). This also indicates that additional dust transport, which does not reach the EAP, must occur at low-tropospheric levels to this coastal sector of Antarctica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boundary scavenging, or the enhanced removal of adsorption-prone elements from the ocean in areas of high particle flux, is an often cited, though not well-quantified, concept used to understand the oceanic distribution of many trace metals. Because 230Th and 231Pa are produced uniformly from uranium decay and removed differentially by scavenging, the process of boundary scavenging can be elucidated by a more detailed knowledge of their water column distributions. To this end, filtered seawater was collected across the gradients in particle flux which span the subarctic Pacific: in the west during the Innovative North Pacific Experiment (INOPEX) and in the east along Line P. Lateral concentration gradients of dissolved 230Th are small throughout the subarctic Pacific at 12 sites of variable particle flux. This contradicts the prediction of the traditional boundary scavenging model. A compilation of water column data from throughout the North Pacific reveals much larger lateral concentration gradients for 230Th between the subarctic North Pacific and subtropical gyre, over lateral gradients in scavenging intensity similar to those found within the subarctic. This reflects a biogeochemical-province aspect to scavenging. Upper water column distributions of 231Pa and 231Pa/230Th ratio are consistent with the influence of scavenging by biogenic opal, while deep waters (>2.5 km) reveal an additional 231Pa sink possibly related to manganese oxides produced at continental margins or ridge crests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large carbonate mound structures have been discovered in the northern Porcupine Seabight (Northeast Atlantic) at depths between 600 and 1000 m. These mounds are associated with the growth of deep-sea corals Lophelia pertusa and Madrepra oculata. In this study, three sediment cores have been analysed. They are from locations close to Propeller Mound, a 150 m high ridge-like feature covered with a cold-water coral ecosystem at its upper flanks. The investigations are concentrated on grain-size analyses, carbon measurements and on the visual description of the cores and computer tomographic images, to evaluate sediment content and structure. The cores portray the depositional history of the past ~31 kyr BP, mainly controlled by sea-level fluctuations and the climate regime with the advance and retreat of the Irish Ice Sheet onto the Irish Mainland Shelf. A first advance of glaciers is indicated by a turbiditic release slightly older than 31 kyr BP, coherent with Heinrich event 3 deposition. During Late Marine Isotope Stage 3 (MIS 3) and MIS 2 shelf erosion prevailed with abundant gravity flows and turbidity currents. A change from glaciomarine to hemipelagic contourite sedimentation during the onset of the Holocene indicates the establishment of the strong, present-day hydrodynamic regime at intermediate depths. The general decrease in accumulation of sediments with decreasing distance towards Propeller Mound suggests that currents (turbidity currents, gravity flows, bottom currents) had a generally stronger impact on the sediment accumulation at the mound base for the past ~31 kyr BP, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On- and off-mound sediment cores from Propeller Mound (Hovland Mound province, Porcupine Seabight) were analysed to understand better the evolution of a carbonate mound. The evaluation of benthic foraminiferal assemblages from the off-mound position helps to determine the changes of the environmental controls on Propeller Mound in glacial and interglacial times. Two different assemblages describe the Holocene and Marine Isotope Stage (MIS) 2 and late MIS 3 (~31 kyr BP). The different assemblages are related to changes in oceanographic conditions, surface productivity and the waxing and waning of the British Irish Ice Sheet (BIIS) during the last glacial stages. The interglacial assemblage is related to a higher supply of organic material and stronger current intensities in water depth of recent coral growth. During the last glaciation the benthic faunas showed high abundances of cassidulinid species, implying cold bottom waters and a reduced availability of organic matter. High sedimentation rates and the domination of Elphidium excavatum point to shelf erosion related to sea-level lowering (~50 m) and the progradation of the BIIS onto the shelf. A different assemblage described for the on-mound core is dominated by Discanomalina coronata, Gavelinopsis translucens, Planulina ariminensis, Cibicides lobatulus and to a lower degree by Hyrrokkin sarcophaga. These species are only found or show significantly higher relative abundances in on-mound samples and their maximum contribution in the lower part of the record indicates a higher coral growth density on Propeller Mound in an earlier period. They are less abundant during the Holocene, however. This dataset portrays the boundary conditions of the habitable range for the cold-water coral Lophelia pertusa, which dominates the deep-water reefal ecosystem on the upper flanks of Propeller Mound. The growth of this ecosystem occurs during interglacial and interstadial periods, whereas a retreat of corals is documented in the absence of glacial sediments on-mound. Glacial conditions with cold intermediate waters, a weak current regime and high sedimentation rates provide an unfavourable environmental setting for Lophelia corals to grow. A Late Pleistocene decrease is observed in the mound growth for Propeller Mound, which might face its complete burial in the future, as it already happened to the buried mounds of the Magellan Mound province further north.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In situ secondary ionization mass spectrometry (SIMS) analyses of oxygen isotopes in authigenic calcite veins were obtained from an active thrust fault system drilled at Ocean Drilling Program (ODP) Site 892 (44°40.4'N, 125°07.1'W) along the Cascadia subduction margin. The average d18OPDB value of all samples is -9.9 per mil and the values are the lowest of any measured in active accretionary prisms. Ranges in individual veins can be as much as 19.6 per mil. There is an isotopic stratigraphy related to the structural stratigraphy. Mean isotope values in the hanging wall, thrust, and footwall are -14.4 per mil, -9.5 per mil, and -5.2 per mil, respectively. Several veins and crosscutting vein sequences show a general trend from lower to higher d18O values over time. Isotopic and textural data indicate several veins formed by a crack-seal mechanism and growth into open fractures. The best explanation for the strong 18O depletions is periodic rapid flow from 2-3 km deeper in the prism. Relatively narrow isotopic ranges for most veins suggest that fluids were derived from a similar source depth for each episode of fluid pulse and calcite crystallization. Structural and mass balance considerations are consistent with a record preserved in the veins of ten to hundreds of thousands of years. The fluid pulses may relate to periodic large earthquake events such as those recognized in the paleoseismicity records from the Cascadia margin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report high temporal resolution osmium isotopes records of bulk sediment and sediment leachates from DSDP Site 480 (Gulf of California) over the last 30 ka; from ODP Site 849 (Eastern equatorial Pacific) from the last 200 ka and from ODP Site 1002C (Cariaco Basin) across the 9-17 ka time interval in order to critically evaluate claims of a global 10% shift in the 187Os/188Os of seawater from glacial to interglacial intervals. We use organic-rich continental margin sites and carbonate-rich pelagic sites to isolate the temporal variations of the osmium seawater isotopic composition. Our results reveal that variations in 187Os/188Os fail to correlate with global changes in temperature across glacials/interglacials cycles as previously claimed. Instead, these results indicate differences of a few percent in the measured 187Os/188Os between each oceanic basin. We argue that these differences strongly suggest that seawater is not well homogenized with respect to its Os isotope composition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present centennial records of sea surface and upper thermocline temperatures in Core MD01-2378 from the Timor Sea, which provide new insights into the variability of the Indonesian outflow across the last two glacial terminations. Mg/Ca in Globigerinoides ruber (white s. s.) indicates an overall increase of 3.2 °C in sea surface temperature (SST) over Termination I. Following an early Holocene plateau at 11.3-6.4 ka, SSTs cooled by 0.6 °C during the middle to late Holocene (6.4-0.7 ka). The early Holocene warming occurred in phase with increasing northern hemisphere summer insolation, coinciding with northward displacement of the Intertropical Convergence Zone, enhanced boreal summer monsoon and expansion of the Indo-Pacific Warm Pool. Thermocline temperatures (Pulleniatina obliquiloculata Mg/Ca) gradually decreased from 24.5 to 21.5 °C since 10.3 ka, reflecting intensification of a cool thermocline throughflow. The vertical structure of the upper ocean in the Timor Sea evolved in similar fashion during the Holocene and MIS5e, although the duration of SST plateaux differed (11.3 to 6.4 ka in Termination I and from 129 to 119 ka in Termination II), which was probably due to the more intense northern hemisphere summer insolation during MIS 5e. During both terminations, SST increased simultaneously in the southern high latitudes and the tropical eastern Indian Ocean, suggesting virtually instantaneous atmospheric climate feedbacks between the high and low latitudes.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.