424 resultados para Petroleum pipeline pumping stations.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-situ geotechnical measurements of surface sediments were carried out along large subaqueous dunes in the Knudedyb tidal inlet channel in the Danish Wadden Sea using a small free-falling penetrometer. Vertical profiles showed a typical stratification pattern with a resolution of ~1 cm depicting a thin surface layer of low sediment strength and a stiffer substratum below (quasi-static bearing capacity equivalent: 1-3 kPa in the top layer, 20-140 kPa in the underlying sediment; thickness of the top layer ca. 5-8 cm). Observed variations in the thickness and strength of the surface layer during a tidal cycle were compared to mean current velocities (measured using an acoustic Doppler current profiler, ADCP), high-resolution bathymetry (based on multibeam echo sounding, MBES) and qualitative estimates of suspended sediment distributions in the water column (estimated from ADCP backscatter intensity). The results revealed an ebb dominance in sediment remobilization, and a general accretion of the bed towards low water. A loose top layer occurred throughout the tidal cycle, likely influenced by bedload transport and small events of suspended sediment resettlement (thickness: 6 +-2 cm). Furthermore, this layer showed a significant increase in thickness (e.g. from 8 cm to 16 cm) related to periods of overall deposition. These findings imply that dynamic penetrometers can conveniently serve to (1) quantify potentially mobile sediments by determining the thickness of a loose sediment surface layer, (2) unravel sediment strength development in potentially mobile sediments and (3) identify sediment accumulation. Such data are an important complement and add a new geotechnical perspective during investigations of sediment remobilization processes in highly dynamic coastal environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface and upper-layer pollution of seas and oceans by crude oil and refinery products is under study by investigators in many countries. The Intergovernmental Oceanographic Commission (IOC) and World Meteorological Organization (WMO) have prepared an international experimental project that is to be carried out within the framework of the Integrated Global Oceanic Station System (IGOSS). The purpose of the project is to prepare a picture of distribution and dynamics of oil pollution. Parameters to be observed include: oil patches (slicks), floating lumps of tar on the surface, and hydrocarbons emulsified and dissolved in water. Cruise 22 of R/V Akademik Kurchatov took the ship through regions being the most suitable for pollution studies. They were conducted from March through June 1976. On the cruise, oil slicks were observed visually by a procedure recommended by the international program. Areas of the slicks were determined from speed of the ship and time required to cross them. Surface samples were taken along the path of the ship for determination of concentrations of dissolved and emulsified hydrocarbons in water. In addition, samples were taken from deep water by a 7-liter vinyl water bottle at 17 stations. Hydrocarbons present in the samples were extracted immediately with carbon tetrachloride. Final determination of hydrocarbons was made by infrared spectrophotometry. This method is currently accepted in the Soviet Union in an arbitration capacity for determination of petroleum products dissolved and emulsified in sea water. Infrared spectrophotometry is used to determine hydrocarbons containing methyl and methylene groups, but they are not identified as to origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following tables show physical and chemical data observed by the "Meteor" in the Persian Gulf and the Strait of Hormus. This study was performed in accordance with the general programme of the International Indian Ocean Expedition (IIOE) during the oeriod from March 25th until April 16th, 1965. The water temperature was measured by reversing thermometers; in most cases two instruments were used simultaneously. The absolute mean temperature difference of this double measurement is 0.0153 °C. The salinity was determined both by salinometer and by titration. In this case of the density, the specific volume anomaly, the dynamic depth anomaly, the sound velocity and the interpolation for standard depths were carried out by the National Oceanographic Data Center (NODC), Washington.