92 resultados para Organic compounds Properties Synthesis.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments from Holes 994C, 995A, 997A, and 997B have been investigated for "combined" gases (adsorbed gas and that portion of free gas that has not escaped from the pore volume during core recovery and sample collection and storage), solvent-extractable organic compounds, and microscopically identifiable organic matter. The soluble materials mainly consist of polar compounds. The saturated hydrocarbons are dominated by n-alkanes with a pronounced odd-even predominance pattern that is derived from higher plant remains. Unsaturated triterpenoids and 17ß, 21ß-pentacyclic triterpenoids are characteristic for a low maturity stage of the organic matter. The low maturity is confirmed by vitrinite reflectance values of 0.3%. The proportion of terrestrial remains (vitrinite) increases with sub-bottom depth. Within the liptinite fraction, marine algae plays a major role in the sections below 180 mbsf, whereas above this depth sporinites and pollen from conifers are dominant. These facies changes are confirmed by the downhole variations of isoprenoid and triterpenoid ratios in the soluble organic matter. The combined gases contain methane, ethane, and propane, which is a mixture of microbial methane and thermal hydrocarbon gases. The variations in the gas ratios C1/(C2+C3) reflect the depth range of the hydrate stability zone. The carbon isotopic contents of ethane and propane indicate an origin from marine organic matter that is in the maturity stage of the oil window.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic geochemical and organic petrographic methods were used to study three Lower to middle Cretaceous sediment samples from Hole 535 in the southeastern Gulf of Mexico for organic matter contents and origin and level of maturation. All three samples contain mixed kerogen Type II/III organic matter with a maturity corresponding to about 0.4% vitrinite reflectance. The marine component increases with stratigraphic age, and microbial reworking of the organic matter is significant in each age. The lower two samples of Hauterivian to Valanginian age appear to be impregnated (or contaminated) with soluble polar organic compounds, but there is only a weak indication for the presence of more mature, nonindigenous hydrocarbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial abundance, biomass and cell size were studied in the oligotrophic sediments of the Cretan Sea (Eastern Mediterranean), in order to investigate their response to the seasonal varying organic matter (OM) inputs. Sediment samples were collected on a seasonal basis along a transect of seven stations (ranging from 40 to 1570 m depth) using a multiple-corer. Bacterial parameters were related to changes in chloroplastic pigment equivalents (CPE), the biochemical composition (proteins, lipids, carbohydrates) of the sedimentary organic matter and the OM flux measured at a fixed station over the deep basin (1570 m depth). The sediments of the Cretan Sea represent a nutrient depleted ecosystem characterised by a poor quality organic matter. All sedimentary organic compounds were found to vary seasonally, and changes were more evident on the continental shelf than in deeper sediments. Bacterial abundance and biomass in the sediments of the Cretan Sea (ranging from 1.02 to 4.59 * 10**8 cells/g equivalent to 8.7 and 38.7 µgC/g) were quite high and their distribution appeared to be closely related to the input of fresh organic material. Bacterial abundance and biomass were sensitive to changes in nutrient availability, which also controls the average cell size and the frequency of dividing cells. Bacterial abundance increased up to 3-fold between August '94 and February '95 in response to the increased amount of sedimentary proteins and CPE, indicating that benthic bacteria were constrained more by changes in quality rather than the quantity of the sedimentary organic material. Bacterial responses to the food inputs were clearly detectable down to 10 cm depth. The distribution of labile organic compounds in the sediments appeared to influence the vertical patterns of bacterial abundance and biomass. Cell size decreased significantly with water depth. Bacterial abundance and biomass were characterised by clear seasonal changes in response to seasonal OM pulses. The strong coupling between protein flux and bacterial biomass together with the strong bacterial dominance over the total biomass suggest that the major part of the carbon flow was channelled through the bacteria and the benthic microbial loop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of the nature and amount of dissolved organic matter (DOM) in pore-water solutions have been confined mostly to recent sediments (Henrichs and Farrington, 1979; Krom and Sholkovitz, 1977; Nissenbaum et al., 1972). The analyses of organic constituents in interstitial waters have not been extended to sediment depths of more than 15 meters (Starikova, 1970). Large fluctuations in organic contents of near-bottom interstitial fluids suggest that organic compounds may provide insight into the chemical and biological processes occurring in the sedimentary column. Gradients in inorganic ion concentrations have been used as indicators of diagenesis of organic matter in deep sediments and interstitial waters. Shishkina (1978) attributed the occurrence of iodine and Cl/Br ratios that deviated from the value of seawater to the breakdown of organic matter and the liberation of bromide during mineralization. Sulfate depletion and maxima in ammonia concentrations were interpreted to be a consequence of sulfate reduction reactions in pore fluids, even at depths of more than 400 meters (Miller et al., 1979; Manheim and Schug, 1978).The purpose of this chapter is to study organic carbon compounds dissolved in interstitial waters of deep sediments at Sites 474 and 479.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic-carbon-rich anoxic sediments from the continental shelf (Site 680) and the lower continental slope (Site 688) off Peru were studied to determine factors controlling the accumulation of reduced sulfur. High concentrations of organic matter in diatomaceous muds, its thermal immaturity, and the presence of abundant hydrogen-containing organic compounds lead to the conclusion that organic matter is not limiting for reduced sulfur formation. Rather, high degrees of iron pyritization at Site 680 limit pyrite accumulation in sediments from this shelf site. The low degree of iron pyritization and nearly complete reduction of dissolved sulfate at Site 688 suggest that a lack of interstitial sulfate is limiting pyrite formation there. Although factors that limit the formation of sedimentary iron sulfide are different at each site, the resulting average reduced-sulfur concentrations are remarkably similar (0.85 wt.% at Site 680 and 0.86 wt.% at Site 688). Carbon to sulfur (C/S) ratios are higher in samples containing in excess of 3 wt.% organic carbon than the average of 2.8 in normal marine sediments and have been primarily influenced by variations in organic matter concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coastal upwelling system off the coast of Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. From 3 to 23 December 2012, R/V Meteor (M91) cruise took place in the Peruvian upwelling system between 4.59 and 15.4°S, and 82.0 to 77.5°W. During M91 we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like chromophoric dissolved organic matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. We analyzed SML and underlying water (ULW) samples at 38 stations focusing on CDOM spectral characteristics as indicator of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and excitation-emission matrix fluorescence (EEMs), which allow us to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. Spectral slope S varied between 0.012 to 0.043 1 nm-1 and was quite similar between SML and ULW, with no significant differences between the two compartments. Higher S values were observed in the ULW of the southern stations below 15°S. By EEMs, we identified five fluorescent components (F1-5) of the CDOM pool, of which two had excitation/emission characteristics of amino-acid-like fluorophores (F1, F4) and were highly enriched in the SML, with a median ratio SML : ULW of 1.5 for both fluorophores. In the study region, values for CDOM absorption ranged from 0.07 to 1.47 m-1. CDOM was generally highly concentrated in the SML, with a median enrichment with respect to the ULW of 1.2. CDOM composition and changes in spectral slope properties suggested a local microbial release of DOM directly in the SML as a response to light exposure in this extreme environment. In a conceptual model of the sources and modifications of optically active DOM in the SML and underlying seawater (ULW), we describe processes we think may take place (Fig. 1); the production of CDOM of higher MW by microbial release through growth, exudation and lysis in the euphotic zone, includes the identified fluorophores (F1, F2, F3, F4, F5). Specific amino-acid-like fluorophores (F1, F4) accumulate in the SML with respect to the ULW, as photochemistry may enhance microbial CDOM release by (a) photoprotection mechanisms and (b) cell-lysis processes. Microbial and photochemical degradation are potential sinks of the amino-acid-like fluorophores (F1, F4), and potential sources of reworked and more refractory humic-like components (F2, F3, F5). In the highly productive upwelling region along the Peruvian coast, the interplay of microbial and photochemical processes controls the enrichment of amino-acid-like CDOM in the SML. We discuss potential implications for air-sea gas exchange in this area.