185 resultados para Observatory


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term ecological data are essential for conservation and to monitor and evaluate the effects of environmental change. Bird populations have been routinely assessed on islands off the British coast for many years and here long term data for one such island, Skokholm, is evaluated for robustness in the light of some 20 changes in observers (wardens) on the island over nearly eight decades. It was found that the dataset was robust when compared to bootstrap data with no species showing significant changes in abundance in years when wardens changed. It is concluded that the breeding bird populations on Skokholm and other British offshore islands are an important scientific resource and that protocols should be enacted to ensure the archiving of records, the continuance of data collection using standardised protocols into the future, and the recognition of such long-term data for science in terms of an appropriate conservation designation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anticyclonic mesoscale eddies (ACME) have been proposed as a mechanism by which new nutrients are episodically delivered into the euphotic zone, thereby enhancing new production as well as shifting phytoplankton community structure. In this paper, we report on a 34-month sediment trap experiment at the Cape Verde Ocean Observatory (CVOO; ca. 18°N, 24°E; December 2009-October 2012), occasionally influenced by ACME passages. The typically oligotrophic, weakly seasonal particle flux pattern at the CVOO is strongly modified by the appearance of a highly productive and low oxygen ACME. Out of four recorded diatom flux maxima at CVOO, three were associated with the passage of ACMEs. The recorded diatom maxima events support the view that local ACME dynamics promotes upward nutrient supply into the euphotic zone leading to a rapid response of diatoms. This response is clearly reflected by the flux seasonality: between 40% and 60% of the total annual diatom flux at the CVOO site was intercepted in a relatively short time interval (<60 days). A highly diverse diatom community characterized the diatom fluxes throughout. Along with the ACME passages, small species of the genus Nitzschia, and Thalassionema nitzschioides var. parva dominated and delivered a major portion of the opal and organic carbon into deeper waters at site CVOO. Several pelagic, warm-water background species became dominant during intervals with low nutrient availability in the euphotic zone. Results of our interannual time-series suggest that ACMEs impact on total diatom production and the species-specific composition of the assemblage north of the Cave Verde Islands, and can strengthen the biological pump in open-ocean, oligotrophic subtropical regions of the world ocean. Our observations are useful for testing biogeochemical ocean models and will also help in improving the knowledge of processes and mechanisms behind interannual time-series of bulk components and microorganisms in pelagic and hemipelagic ocean areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present theories of deep-sea community organization recognize the importance of small-scale biological disturbances, originated partly from the activities of epibenthic megafaunal organisms, in maintaining high benthic biodiversity in the deep sea. However, due to technical difficulties, in situ experimental studies to test hypotheses in the deep sea are lacking. The objective of the present study was to evaluate the potential of cages as tools for studying the importance of epibenthic megafauna for deep-sea benthic communities. Using the deep-diving Remotely Operated Vehicle (ROV) "VICTOR 6000", six experimental cages were deployed at the sea floor at 2500 m water depth and sampled after 2 years (2y) and 4 years (4y) for a variety of sediment parameters in order to test for caging artefacts. Photo and video footage from both experiments showed that the cages were efficient at excluding the targeted fauna. The cage also proved to be appropriate to deep-sea studies considering the fact that there was no fouling on the cages and no evidence of any organism establishing residence on or adjacent to it. Environmental changes inside the cages were dependent on the experimental period analysed. In the 4y experiment, chlorophyll a concentrations were higher in the uppermost centimeter of sediment inside cages whereas in the 2y experiment, it did not differ between inside and outside. Although the cages caused some changes to the sedimentary regime, they are relatively minor compared to similar studies in shallow water. The only parameter that was significantly higher under cages at both experiments was the concentration of phaeopigments. Since the epibenthic megafauna at our study site can potentially affect phytodetritus distribution and availability at the seafloor (e.g. via consumption, disaggregation and burial), we suggest that their exclusion was, at least in part, responsible for the increases in pigment concentrations. Cages might be suitable tools to study the long-term effects of disturbances caused by megafaunal organisms on the diversity and community structure of smaller-sized organisms in the deep sea, although further work employing partial cage controls, greater replication, and evaluating faunal components will be essential to unequivocally establish their utility.