161 resultados para Nitrogen-fixation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. This is a gridded data product about diazotrophic organisms . There are 6 variables. Each variable is gridded on a dimension of 360 (longitude) * 180 (latitude) * 33 (depth) * 12 (month). The first group of 3 variables are: (1) number of biomass observations, (2) biomass, and (3) special nifH-gene-based biomass. The second group of 3 variables is same as the first group except that it only grids non-zero data. We have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling more than 11,000 direct field measurements including 3 sub-databases: (1) nitrogen fixation rates, (2) cyanobacterial diazotroph abundances from cell counts and (3) cyanobacterial diazotroph abundances from qPCR assays targeting nifH genes. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. Data are assigned to 3 groups including Trichodesmium, unicellular diazotrophic cyanobacteria (group A, B and C when applicable) and heterocystous cyanobacteria (Richelia and Calothrix). Total nitrogen fixation rates and diazotrophic biomass are calculated by summing the values from all the groups. Some of nitrogen fixation rates are whole seawater measurements and are used as total nitrogen fixation rates. Both volumetric and depth-integrated values were reported. Depth-integrated values are also calculated for those vertical profiles with values at 3 or more depths.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cold-water corals (CWC) are widely distributed around the world forming extensive reefs at par with tropical coral reefs. They are hotspots of biodiversity and organic matter processing in the world's deep oceans. Living in the dark they lack photosynthetic symbionts and are therefore considered to depend entirely on the limited flux of organic resources from the surface ocean. While symbiotic relations in tropical corals are known to be key to their survival in oligotrophic conditions, the full metabolic capacity of CWC has yet to be revealed. Here we report isotope tracer evidence for efficient nitrogen recycling, including nitrogen assimilation, regeneration, nitrification and denitrification. Moreover, we also discovered chemoautotrophy and nitrogen fixation in CWC and transfer of fixed nitrogen and inorganic carbon into bulk coral tissue and tissue compounds (fatty acids and amino acids). This unrecognized yet versatile metabolic machinery of CWC conserves precious limiting resources and provides access to new nitrogen and organic carbon resources that may be essential for CWC to survive in the resource-depleted dark ocean.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since productivity and growth of coral-associated dinoflagellate algae is nitrogen (N)-limited, dinitrogen (N2) fixation by coral-associated microbes is likely crucial for maintaining the coral-dinoflagellate symbiosis. It is thus essential to understand the effects future climate change will have on N2 fixation by the coral holobiont. This laboratory study is the first to investigate short-term effects of ocean acidification on N2 fixation activity associated with the tropical, hermatypic coral Seriatopora hystrix using the acetylene reduction assay in combination with calcification measurements. Findings reveal that simulated ocean acidification ( pCO2 1080 µatm) caused a rapid and significant decrease (53%) in N2 fixation rates associated with S. hystrix compared to the present day scenario ( pCO2 486 µatm). In addition, N2 fixation associated with the coral holobiont showed a positive exponential relationship with its calcification rates. This suggests that even small declines in calcification rates of hermatypic corals under high CO2 conditions may result in decreased N2 fixation activity, since these 2 processes may compete for energy in the coral holobiont. Ultimately, an intensified N limitation in combination with a decline in skeletal growth may trigger a negative feedback loop on coral productivity exacerbating the negative long-term effects of ocean acidification.