482 resultados para NASA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze 2006-2009 data from four continuous Global Positioning System (GPS) receivers located between 5 and 150 km from the glacier Jakobshavn Isbrae, West Greenland. The GPS stations were established on bedrock to determine the vertical crustal motion due to the unloading of ice from Jakobshavn Isbrae. All stations experienced uplift, but the uplift rate at Kangia North, only 5 km from the glacier front, was about 10 mm/yr larger than the rate at Ilulissat, located only ~45 km further away. This suggests that most of the uplift is due to the unloading of the Earth's surface as Jakobshavn thins and loses mass. Our estimate of Jakobshavn's contribution to uplift rates at Kangia North and Ilulissat are 14.6 ± 1.7 mm/yr and 4.9 ± 1.1 mm/yr, respectively. The observed rates are consistent with a glacier thinning model based on repeat altimeter surveys from NASA's Airborne Topographic Mapper (ATM), which shows that Jakobshavn lost mass at an average rate of 22 ± 2 km**3/yr between 2006 and 2009. At Kangia North and Ilulissat, the predicted uplift rates computed using thinning estimates from the ATM laser altimetry are 12.1 ± 0.9 mm/yr and 3.2 ± 0.3 mm/yr, respectively. The observed rates are slightly larger than the predicted rates. The fact that the GPS uplift rates are much larger closer to Jakobshavn than further away, and are consistent with rates inferred using the ATM-based glacier thinning model, shows that GPS measurements of crustal motion are a potentially useful method for assessing ice-mass change models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oceans play a critical role in the Earth's climate, but unfortunately, the extent of this role is only partially understood. One major obstacle is the difficulty associated with making high-quality, globally distributed observations, a feat that is nearly impossible using only ships and other ocean-based platforms. The data collected by satellite-borne ocean color instruments, however, provide environmental scientists a synoptic look at the productivity and variability of the Earth's oceans and atmosphere, respectively, on high-resolution temporal and spatial scales. Three such instruments, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) onboard ORBIMAGE's OrbView-2 satellite, and two Moderate Resolution Imaging Spectroradiometers (MODIS) onboard the National Aeronautic and Space Administration's (NASA) Terra and Aqua satellites, have been in continuous operation since September 1997, February 2000, and June 2002, respectively. To facilitate the assembly of a suitably accurate data set for climate research, members of the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project and SeaWiFS Project Offices devote significant attention to the calibration and validation of these and other ocean color instruments. This article briefly presents results from the SIMBIOS and SeaWiFS Project Office's (SSPO) satellite ocean color validation activities and describes the SeaWiFS Bio-optical Archive and Storage System (SeaBASS), a state-of-the-art system for archiving, cataloging, and distributing the in situ data used in these activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Though much attention has been focused in recent years on the melting of ice from Greenland and Antarctica, nearly half of the ice volume currently being lost to the ocean is actually coming from other mountain glaciers and ice caps. Ice loss from a group of islands in northern Canada accounts for much of that volume. In a study published in April 2011 in the journal Nature, a team of researchers led by Alex Gardner of the University of Michigan found that land ice in both the northern and southern Canadian Arctic Archipelago has declined sharply. The maps above show ice loss from surface melting for the northern portion of the archipelago from 2004-2006 (left) and 2007-2009 (right). Blue indicates ice gain, and red indicates ice loss. In the six years studied, the Canadian Arctic Archipelago lost an average of approximately 61 gigatons of ice per year. (A gigaton is a billion tons of ice.) The research team also found the rate of ice loss was accelerating. From 2004 to 2006, the average mass loss was roughly 31 gigatons per year; from 2007 to 2009, the loss increased to 92 gigatons per year. Gardner and colleagues used three independent methods to assess ice mass, all of which showed the same trends. The team used a model to estimate the surface mass balance of ice and the amount of ice discharged. They also compiled and analyzed measurements from NASA's Ice, Cloud and Land Elevation Satellite (ICESat) to assess changes in the surface height of ice. Finally, they gathered observations from NASA's Gravity Recovery and Climate Experiment (GRACE) to determine changes in the gravity field in the region, an indicator of the amount of ice gained or lost. The Canadian Arctic Archipelago generally receives little precipitation, and the amount of snowfall changes little from year to year. But the rate of snow and ice melting varies considerably, so changes in ice mass come largely from changes in summertime melt. During the 2004 to 2009 study period, the Canadian Arctic Archipelago experienced four of its five warmest years since 1960, likely fueling the melting. Gardner notes that from 2001 to 2004, the sum of melting from all mountain glaciers and ice caps around the world (but not the Greenland and Antarctic ice sheets) contributed an estimated 1 millimeter per year to global sea level rise. Recent estimates suggest the Greenland and Antarctic ice sheets add another 1.3 millimeters per year to sea level. "This means 1 percent of the land ice volume-mountain glaciers and ice caps-account for about half of all ice loss to the world's oceans," Gardner said. "Most of the ice loss is coming from the Canadian Arctic Archipelago, Alaska, Patagonia, the Himalayas, and the smaller ice masses surrounding the main Greenland and Antarctic ice sheets."