598 resultados para Microbial diversity -- North Pacific Ocean
Resumo:
Collections made with 150 l sampling bottles and BR 113/140 nets, as well as direct counts from the Mir submersible are used to analyze vertical distribution of total biomass of meso- and macroplankton and biomass distributions of their main component groups in the central oligotrophic regions of the North Pacific. Biomass of mesoplankton in the upper 200 m layer ranges from 3.1 to 8.6 g/m**2, but sometimes it increases up to as much as 98 g/m**2 in local population explosions of salps. Jellies predominate in macroplankton at depths of up to 2-3 km, contributing 97-98% of live weight and 30-70% of biomass as organic carbon. In importance they are followed by micronecton fishes (up to 40% of organic carbon). Contributions of other groups countable from the submersible were negligible. Distributions of species at particular stations are discussed.
Resumo:
Radiolarians were recovered from three of the five holes investigated during Leg 125. Relative abundances are estimated at Holes 782A and 784A, where preservation is poor to good. Rare, poorly preserved radiolarians are present in Hole 786A. Seven radiolarian zones are recognized in the latest early- middle Miocene to early Pleistocene of Holes 782A and 784A. These zones are approximately correlated to the zones of Sanfilippo and others published in 1985.
Resumo:
Palynological analyses were performed on 53 surface sediment samples from the North Pacific Ocean, including the Bering and Okhotsk Seas (37-64°N, 144°E-148°W), in order to document the relationships between the dinocyst distribution and sea-surface conditions (temperatures, salinities, primary productivity and sea-ice cover). Samples are characterized by concentrations ranging from 18 to 143816 cysts/cm**3 and the occurrence of 32 species. A canonical correspondence analysis (CCA) was carried out to determine the relationship between environmental variables and the distribution of dinocyst taxa. The first and second axes represent, respectively, 47% and 17.8% of the canonical variance. Axis 1 is positively correlated with all parameters except to the sea-ice and primary productivity in August, which are on the negative side. Results indicate that the composition of dinocyst assemblages is mostly controlled by temperature and that all environmental variables are correlated together. The CCA distinguishes 3 groups of dinocysts: the heterotrophic taxa, the genera Impagidinium and Spiniferites as well as the cyst of Pentapharsodinium dalei and Operculodinium centrocarpum. Five assemblage zones can be distinguished: 1) the Okhotsk Sea zone, which is associated to temperate and eutrophic conditions, seasonal upwellings and Amur River discharges. It is characterized by the dominance of O. centrocarpum, Brigantedinium spp. and Islandinium minutum; 2) the Western Subarctic Gyre zone with subpolar and mesotrophic conditions due to the Kamchatka Current and Alaska Stream inflows. Assemblages are dominated by Nematosphaeropsis labyrinthus, Pyxidinopsis reticulata and Brigantedinium spp.; 3) the Bering Sea zone, depicting a subpolar environment, influenced by seasonal upwellings and inputs from the Anadyr and Yukon Rivers. It is characterized by the dominance of I. minutum and Brigantedinium spp.; 4) the Alaska Gyre zone with temperate conditions and nutrient-enriched surface waters, which is dominated by N. labyrinthus and Brigantedinium spp. and 5) the Kuroshio Extension-North Pacific-Subarctic Current zone characterized by a subtropical and oligotrophic environment, which is dominated by O. centrocarpum, N. labyrinthus and warm taxa of the genus Impagidinium. Transfer functions were tested using the modern analog technique (MAT) on the North Pacific Ocean (= 359 sites) and the entire Northern Hemisphere databases ( = 1419 sites). Results confirm that the updated Northern Hemisphere database is suitable for further paleoenvironmental reconstructions, and the best results are obtained for temperatures with an accuracy of +/-1.7 °C.
Resumo:
We report new 187Os/186Os data and Re and Os concentrations in metalliferous sediments from the Pacific to construct a composite Os isotope seawater evolution curve over the past 80 m.y. Analyses of four samples of upper Cretaceous age yield 187Os/186Os values of between 3 and 6.5 and 187Re/186Os values below 55. Mass balance calculations indicate that the pronounced minimum of about 2 in the Os isotope ratio of seawater at the K-T boundary probably reflects the enormous input of cosmogenic material into the oceans by the K-T impactor(s). Following a rapid recovery to 187Os/186Os of 3.5 at 63 Ma, data for the early and middle part of the Cenozoic show an increase in 187Os/186Os to about 6 at 15 Ma. Variations in the isotopic composition of leachable Os from slowly accumulating metalliferous sediments show large fluctuations over short time spans. In contrast, analyses of rapidly accumulating metalliferous carbonates do not exhibit the large oscillations observed in the pelagic clay leach data. These results together with sediment leaching experiments indicate that dissolution of non-hydrogenous Os can occur during the hydrogen peroxide leach and demonstrate that Os data from pelagic clay leachates do not always reflect the Os isotopic composition of seawater. New data for the late Cenozoic further substantiate the rapid increase in the 187Os/186Os of seawater during the past 15 Ma. We interpret the correlation between the marine Sr and Os isotope records during this time period as evidence that weathering within the drainage basin of the Ganges-Brahmaputra river system is responsible for driving seawater Sr and Os toward more radiogenic isotopic compositions. The positive correlation between 87Sr/86Sr and U concentration, the covariation of U and Re concentrations, and the high dissolved Re, U and Sr concentrations found in the Ganges-Brahmaputra river waters supports this interpretation. Accelerating uplift of many orogens worldwide over the past 15 Ma, especially during the last 5 Ma, could have contributed to the rapid increase in 187Os/186Os from 6 to 8.5 over the past 15 Ma. Prior to 15 Ma the marine Sr and Os record are not tightly coupled. The heterogeneous distribution of different lithologies within eroding terrains may play an important role in decoupling the supplies of radiogenic Os and Sr to the oceans and account for the periods of decoupling of the marine Sr and Os isotope records.
Resumo:
Detailed palynological studies in the northeast (NE) Pacific, Strait of Georgia (BC, Canada), southeast (SE) Pacific and northwest Pacific (Dongdo Bay, South Korea) resulted in the recognition of the new dinoflagellate cyst species Selenopemphix undulata sp. nov. This species is restricted to cool temperate to sub-polar climate zones, where it is found in highest relative abundances in highly productive non- to reduced upwelling regions with an annual mean sea-surface temperature (aSST) below 16 °C and an annual mean sea-surface salinity (aSSS) between 20 and 35 psu. Those observations are in agreement with the late Quaternary fossil records from Santa Barbara Basin (ODP 893; 34°N) and offshore Chile (ODP 1233; 41°S), where this species thrived during the last glacial. This period was characterised by high nutrient availability and the absence of species favouring upwelling conditions. The indirect dependence of S. undulata sp. nov. abundances on nutrient availability during reduced or non-upwelling periods is expressed by the synchronous fluctuations with diatom abundances, since the distribution and growth rates of the latter are directly related with the availability of macronutrients in the surface waters.
Resumo:
Strontium isotopic compositions of ichthyoliths (microscopic fish remains) in deep-sea clays recovered from the North Pacific Ocean (ODP holes 885A, 886B, and 886C) are used to provide stratigraphic age control within these otherwise undatable sediments. Age control within the deep-sea clays is crucial for determining changes in sedimentation rates, and for calculating fluxes of chemical and mineral components to the sediments. The Sr isotopic ages are in excellent agreement with independent age datums from above (diatom ooze), below (basalt basement) and within (Cretaceous-Tertiary boundary) the clay deposit. The 87Sr/86Sr ratios of fish teeth from the top of the pelagic clay unit (0.7089891), indicate an Late Miocene age (5.8 Ma), as do radiolarian and diatom biostratigraphic ages in the overlying diatom ooze. The 87Sr/86Sr ratio (0.707887) is consistent with a Cretaceous-Tertiary boundary age, as identified by anomalously high iridium, shocked quartz, and sperules in Hole 886C. The 87Sr/86Sr ratios of pretreated fish teeth from the base of the clay unit are similar to Late Cretaceous seawater (0.707779-0.7075191), consistent with radiometric ages from the underlying basalt of 81 Ma. Calculation of sedimentation rates based on Sr isotopic ages from Hole 886C indicate an average sedimentation rate of 17.7 m/Myr in Unit II (diatom ooze), 0.55 m/Myr in Unit IIIa (pelagic clay), and 0.68 m/Myr in Unit IIIb (distal hydrothermal precipitates). The Sr isotopic ages indicate a period of greatly reduced sedimentation (or possible hiatus) between about 35 and 65 Ma (Eocene-Paleocene), with a linear sedimentation rate of only 0.04 m/Myr The calculated sedimentation rates are generally inversely proportional to cobalt accumulation rates and ichthyolith abundances. However, discrepancies between Sr isotope ages and cobalt accumulation ages of l0-15 Myr are evident, particularly in the middle of the clay unit IIIa (Oligocene-Paleocene).
Resumo:
Radiolarian census and abundance data were collected from three deep-sea cores drilled by the Ocean Drilling Program Sites 884, 887 and 1151 to investigate patterns of ecologic changes in space and time during the last 16 million years for the mid-latitude to subarctic North Pacific. High concentrations of radiolarians occurred between 9.0 and 2.7 Ma. Radiolarian species richness was highest in the early middle Miocene at each site and gradually decreased up to about 7 Ma, coinciding with a well-established global cooling trend. A degree of overlap index calculated for radiolarian assemblages revealed 11 faunal change events, of which 8 corresponded to global cooling events and expansions of polar ice sheets. Three of the faunal change events were observed within the peak of radiolarian accumulation rate and were ascribed to changes in primary productivity in the North Pacific rather than global climatic changes. Our assemblage analyses revealed that north-south differentiation in radiolarian assemblages in the northwestern Pacific has existed since 16 Ma and became more distinct via major steps at 6.8 Ma and 2.7 Ma, coinciding with major glaciation events, and that east-west faunal contrasts in the subarctic region became obvious beginning at 11.7 Ma and changed to a different mode around 6.8 Ma. The observed east-west faunal differences possibly reflect east to west climate differences that were characterized by cooler temperatures in the east than the west during the late Miocene (11.7-6.8 Ma) and then by the opposite temperature trend (6.8 Ma-Recent). A severe glaciation at 2.7 Ma played a large role, particularly in temporal changes in radiolarian accumulation rate and assemblage composition.
Resumo:
Samples collected from the coarse basal portions of mid-Cretaceous volcaniclastic turbidites from the Mariana and Pigafetta basins are remarkably similar in terms of the petrographic and chemical features of their igneous clasts and bulk rock composition. Clasts of magmatic origin are dominated by glassy vesicular shards, variably phyric, holocrystalline basalts, and crystal fragments (olivine, clinopyroxene, plagioclase, amphibole, and biotite). The composition of the pyroxenes and amphiboles are typical of those found in differentiated hydrous alkali basalts. The bulk chemical composition of the volcaniclastites (based on stable incompatible elements and their ratios in highly vitric samples) is characteristic of alkali basalts found in within-plate oceanic eruptive environments. Miocene volcaniclastites from Site 802 are broadly similar to the Cretaceous samples in terms of clast type and bulk composition, and have also been derived from an oceanic alkali basalt source. The chemistry of the Miocene volcaniclastites differ, however, in having distinctive Zr/Y and Zr/Nb ratios and a more restricted chemical composition. The magmatic products of nearly emergent seamounts within the western Pacific basins appears to have been dominated by alkali basalt volcanism during the mid-Cretaceous and also the Miocene. The highly vitric nature of the Cretaceous and Miocene volcaniclastites, together with the morphology and vesicularity of their shards, suggests that they are the reworked (via mass flow) products of hyaloclastite accumulations produced in a shallow-water eruptive environment, such as that adjacent to nearly emergent seamounts or ocean islands. The association of ooids, reefal debris, and, in rare cases, woody material with the volcaniclastites supports their shallow-water derivation.
Resumo:
A new, high-resolution planktonic foraminiferal Mg/Ca-based ocean temperature record has been generated for deep sea core MD02-2496, sited offshore of Vancouver Island, Western Canada during the last deglaciation (21-12 ka). The relationship between Cordilleran Ice Sheet (CIS) retreat and changing regional ocean temperatures has been reconstructed through glaciomarine sediments in MD02-2496 that capture tidewater glacier response to surface ocean thermal forcing. At CIS maximum extent, the marine margin of the ice sheet advanced onto the continental shelf. During this interval, ocean temperatures recorded by surface ocean dwelling Globigerina bulloides remained a relatively constant ~7.5°C while subsurface dwelling Neogloboquadrina pachyderma (s.) recorded temperatures of ~5°C. These ocean temperatures were sufficiently warm to induce significant melt along the tidewater ice terminus similar to modern Alaskan tidewater glacial systems. During the deglacial retreat of the CIS, the N. pachyderma temperature record shows two distinct warming steps of ~2 and 2.5°C between 17.2-16 and 15.5-14 ka respectively, coincident with ice rafting events from the CIS, while G. bulloides records an ~3°C warming from 15 to14 ka. We hypothesize that submarine melting resulting from relatively warm ocean temperatures was an important process driving ice removal from CIS tidewater glaciers during the initial stages of deglaciation.