173 resultados para Mayo, Richard Southwell Bourke, Earl of, 1822-1872.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Aleutian abyssal plain is a fossil abyssal plain of Paleogene age in the western Gulf of Alaska. The plain is a large, southward-thinning turbidite apron now cut off from sediment sources by the Aleutian Trench. Turbidite sedimentation ceased about 30 m.y. ago, and the apron is now buried under a thick blanket of pelagic deposits. Turbidites of the plain were recovered at site 183 of the Deep Sea Drilling Project on the northern edge of the apron. The heavy-mineral fraction of sand-sized samples is mostly amphibole and epidote with minor pyroxene, garnet, and sphene. The light-mineral fraction is mostly quartzose debris and feldspars. Subordinate lithic fragments consist of roughly equal amounts of metamorphic, plutonic, sedimentary, and volcanic grains. The sand compositions are arkoses in many sandstone classifications, although if fine silt is included with clay as matrix, the sand deposits are feldspathic or lithofeldspathic graywacke. The sands are apparently first-cycle products of deep dissection into a plutonic terrane, and they contrast sharply with arc-derived volcanic sandstones of similar age common on the adjacent North American continental margin. The turbidite sands are stratigraphically remarkably constant in composition, which indicates derivation from virtually the same terrane through a time span approaching 20 m.y. Comparison of Aleutian plain data with the compositions of coeval sedimentary rocks from the northeast Pacific margin shows that the Kodiak shelf area includes possible proximal equivalents of the more distal turbidites. Derivation from the volcaniclastic Mesozoic flysch of the Shumagin-Kodiak shelf is unlikely; more probably the sediments were derived from primary plutonic sources. The turbidites also resemble deposits in the Chugach Mountains and the younger turbidites of the Alaskan abyssal plain and could conceivably have been derived from the coast ranges of southeastern Alaska or western British Columbia. The Aleutian plain sediment most likely was not derived from as far south as the Oregon-Washington continental margin, where coeval sedimentary deposits are dominantly volcaniclastic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensitivity of brightness temperature (T(B)) at 6.9, 10.7, and 18.7 GHz from Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) observations is investigated over five winter seasons (2002-2007) on Great Bear Lake and Great Slave Lake, Northwest Territories, Canada. The T(B) measurements are compared to ice thicknesses obtained with a previously validated thermodynamic lake ice model. Lake ice thickness is found to explain much of the increase of T(B) at 10.7 and 18.7 GHz. T(B) acquired at 18.7 GHz (V-pol) and 10.7 GHz (H-pol) shows the strongest relation with simulated lake ice thickness over the period of study (R**2 > 0.90). A comparison of the seasonal evolution of T(B) for a cold winter (2003-2004) and a warm winter (2005-2006) reveals that the relationship between T(B) and ice growth is stronger in the cold winter (2003-2004). Overall, this letter shows the high sensitivity of T(B) to ice growth and, thus, the potential of AMSR-E mid-frequency channels to estimate ice thickness on large northern lakes.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: