767 resultados para MIXED-LAYER
Resumo:
Sedimentary rocks of Barremian through early Maestrichtian age recovered on Deep Sea Drilling Project Leg 61 had their principal source in the complex of igneous rocks with which they are interlayered in the Nauru Basin. Relict textures and primary sedimentary structures show these Cretaceous sediments to be of hyaloclastic origin, in part reworked and redeposited by slumps and currents. The dominant composition now is smectite, but locally iron, titanium, and manganese oxides, plagioclase, pyroxene, analcime, clinoptilolite, chalcedonic quartz, cristobalite, amphibole, nontronite, celadonite, and pyrite are also present. The mineral assemblages and the geochemistry reflect the original basaltic composition and its subsequent alteration by one or more processes of submarine weathering, authigenesis, hydrothermal circulation, and contact metamorphism. Hyaloclastitic sandstone, siltstone, and breccia within the sheet flows below 729 meters sub-bottom depth have Barremian fossils, thus establishing the age of the lower, or extrusive, complex of post-ridge-crest volcanism. Similar hyaloclastites between 564 and 729 meters are invaded by hypabyssal sills of the upper igneous complex, and fossil ages of Albian or Cenomanian set an older limit to the age of that second post-ridge-crest episode. Cenomanian to early Campanian sedimentary rocks between 490 and 564 meters have a substantial contribution of clays of submarine-weathered-basalt origin, as well as hydrothermal and pelagic components. The interval of reworked hyaloclastitic siltstone, sandstone, and breccias between 450 and 490 meters is of late Campanian and early Maestrichtian age. These sediments probably formed from glassy basalt that fragmented upon eruption nearby, when sills were being emplaced. In addition to pelagic elements, these Upper Cretaceous volcanogenic sediments include redeposited material of shallow-water origin, apparently derived from the Marshall Islands.
Resumo:
The relationship between decadal to centennial changes in ocean circulation and climate is difficult to discern using the sparse and discontinuous instrumental record of climate and, as such, represents a large uncertainty in coupled ocean-atmosphere general circulation models. We present new modern and fossil coral radiocarbon (D14C) records from Palmyra (6°N, 162°W) and Christmas (2°N, 157°W) islands to constrain central tropical Pacific ocean circulation changes during the last millennium. Seasonally to annually resolved coral D14C measurements from the 10th, 12th-17th, and 20th centuries do not contain significant interannual to decadal-scale variations, despite large changes in coral d18O on these timescales. A centennial-scale increase in coral radiocarbon from the Medieval Climate Anomaly (~900-1200 AD) to the Little Ice Age (~1500-1800) can be largely explained by changes in the atmospheric D14C, as determined with a box model of Palmyra mixed layer D14C. However, large 12th century depletions in Palmyra coral D14C may reflect as much as a 100% increase in upwelling rates and/or a significant decrease in the D14C of higher-latitude source waters reaching the equatorial Pacific during this time. SEM photos reveal evidence for minor dissolution and addition of secondary aragonite in the fossil corals, but our results suggest that coral D14C is only compromised after moderate to severe diagenesis for these relatively young fossil corals.
Resumo:
The basaltic rocks of Hole 794D drilled during Leg 128 are strongly altered. Microprobe analyses and XRD spectra on small quantities of matter extracted from thin sections show that primary minerals and glassy zones of the groundmass are totally or partially replaced by clay minerals with chlorite/saponite mixed-layer composition whatever the rock sample considered. This mixed-layer was also identified in veins and vesicles where it crystallizes in spheroidal aggregates. The largest veins and vesicles are filled by a zoned deposit: the chlorite/saponite mixed-layer always occupies the central part and is rimmed by pure saponite. Calcite crystallizes in secondary fractures which crosscut the clayey veins and vesicles. Chemographic analysis based on the M+-4Si-3R2+ projection shows that the chemical composition of the saponite component in the mixed-layer is identical to that of the free saponite. This indicates that the clay mineral crystallization was controlled by the chemical composition of the alteration fluids. From petrographic evidence, it is suggested that both chlorite/saponite mixed-layer and free saponite belong to the same hydrothermal event and are produced by a temperature decrease. This is supported by the stable isotopic data. The isotopic data show very little variation: d18O saponite ranges from 13.1 per mil to 13.5 per mil, and dD saponite from -73.6 per mil to -70.0 per mil. d18O calcite varies from +19.7 per mil to +21.9 per mil vs SMOW and d13C from -3.2 per mil to +0.4 per mil vs. PDB. These values are consistent with seawater alteration of the basalt. The formation of saponite took place at 150°-180°C and the formation of calcite at about 65°C.
Resumo:
Southern Ocean biogeochemical processes have an impact on global marine primary production and global elemental cycling, e.g. by likely controlling glacial-interglacial pCO2 variation. In this context, the natural silicon isotopic composition (d30Si) of sedimentary biogenic silica has been used to reconstruct past Si-consumption:supply ratios in the surface waters. We present a new dataset in the Southern Ocean from a IPY-GEOTRACES transect (Bonus-GoodHope) which includes for the first time summer d30Si signatures of suspended biogenic silica (i) for the whole water column at three stations and (ii) in the mixed layer at seven stations from the subtropical zone up to the Weddell Gyre. In general, the isotopic composition of biogenic opal exported to depth was comparable to the opal leaving the mixed layer and did not seem to be affected by any diagenetic processes during settling, even if an effect of biogenic silica dissolution cannot be ruled out in the northern part of the Weddell Gyre. We develop a mechanistic understanding of the processes involved in the modern Si-isotopic balance, by implementing a mixed layer model. We observe that the accumulated biogenic silica (sensu Rayleigh distillation) should satisfactorily describe the d30Si composition of biogenic silica exported out of the mixed layer, within the limit of the current analytical precision on the d30Si. The failures of previous models (Rayleigh and steady state) become apparent especially at the end of the productive period in the mixed layer, when biogenic silica production and export are low. This results from (1) a higher biogenic silica dissolution:production ratio imposing a lower net fractionation factor and (2) a higher Si-supply:Si-uptake ratio supplying light Si-isotopes into the mixed layer. The latter effect is especially expressed when the summer mixed layer becomes strongly Si-depleted, together with a large vertical silicic acid gradient, e.g. in the Polar Front Zone and at the Polar Front.
Resumo:
Central Hill is in the northern part of the Escanaba Trough, which is a sediment-filled rift of southern Gorda Ridge. Central Hill is oriented north-south and is associated with extensive sulfide deposits. Hydrothermal alteration of sediment from Site 1038 was studied through analyses of mineralogy and the chemistry and oxygen isotopic compositions of one nearly pure clay sample. In addition, Site 1037 was drilled to establish the character of the unaltered sedimentary sequence away from the hydrothermal centers of the Northern Escanaba Trough Study Area (NESCA). Mineralogy of the clay-size fraction of turbiditic and hemipelagic sediments of Hole 1037B are predominantly quartz, feldspar, pyroxene, illite, chlorite, and smectite, representing continental-derived material. Cores from Hole 1038I, located within the area of Central Hill but away from known active vent areas, recovered minor amounts of chlorite/smectite mixed-layer clay in the fine fraction, indicating a low-temperature hydrothermal alteration. The 137.4-m-thick sediment section of Hole 1038G is located in an area of low-temperature venting. The uppermost sample is classified as chlorite/smectite mixed layer, which is underlain by chlorite as the dominant mineral. The lowermost deposits of Hole 1038G are also characterized by chlorite/smectite mixed-layer clay. In comparison to Hole 1038I, the mineralogic sequence of Hole 1038G reflects increased chloritization. Intensely altered sediment is almost completely replaced by hydrothermal chlorite in subsurface sediments of Hole 1038H. Alteration to chlorite is characterized by depletion in Na, K, Ti, Ca, Sr, Cs, and Tl and enrichment in Ba. Further, Eu depletion reflects a high-temperature plagioclase alteration. A chlorite 18O value of 2.6 indicates formation at a temperature of ~190°C. It is concluded that the authigenic chlorite in Hole 1038H formed by an active high-temperature fluid flow in the shallow subsurface.
Resumo:
Four sites in the region of the Mazagan Plateau off northwest Africa were drilled during Leg 79 of the Deep Sea Drilling Project. Bulk mineralogy and clay mineralogy were analyzed from the Cenozoic sediments recovered from the four sites.
Resumo:
This book presents new data on chemical and mineral compositions and on density of altered and fresh igneous rocks from key DSDP and ODP holes drilled on the following main tectonomagmatic structures of the ocean floor: 1. Mid-ocean ridges and abyssal plains and basins (DSDP Legs 37, 61, 63, 64, 65, 69, 70, 83, and 91 and ODP Legs 106, 111, 123, 129, 137, 139, 140, 148, and 169); 2. Seamounts and guyots (DSDP Legs 19, 55, and 62 and ODP Legs 143 and 144); 3. Intraplate rises (DSDP Legs 26, 33, 51, 52, 53, 72, and 74 and ODP Legs 104, 115, 120, 121, and 183); and 4. Marginal seas (DSDP Legs 19, 59, and 60 and ODP Legs 124, 125, 126, 127, 128, and 135). Study results of altered gabbro from the Southwest Indian Ridge (ODP Leg 118) and serpentinized ultramafic rocks from the Galicia margin (ODP Leg 103) are also presented. Samples were collected by the authors from the DSDP/ODP repositories, as well as during some Glomar Challenger and JOIDES Resolution legs. The book also includes descriptions of thin sections, geochemical diagrams, data on secondary mineral assemblages, and recalculated results of chemical analyses with corrections for rock density. Atomic content of each element can be quantified in grams per standard volume (g/1000 cm**3). The suite of results can be used to estimate mass balance, but parts of the data need additional work, which depends on locating fresh analogs of altered rocks studied here. Results of quantitative estimation of element mobility in recovered sections of the upper oceanic crust as a whole are shown for certain cases: Hole 504B (Costa Rica Rift) and Holes 856H, 857C, and 857D (Middle Valley, Juan de Fuca Ridge).
Resumo:
Long chain alkyl diols form a group of lipids occurring widely in marine environments. Recent studies have suggested several palaeoclimatological applications for proxies based on their distributions, but also revealed uncertainties about their applicability. Here we evaluate the use of long chain 1,14-alkyl diol indices for reconstruction of temperature and upwelling conditions by comparing index values, obtained from a comprehensive set of marine surface sediments, with environmental factors like sea surface temperature (SST), salinity and nutrient concentrations. Previous cultivation efforts indicated a strong effect of temperature on the degree of saturation and the chain length distribution of long chain 1,14-alkyl diols in Proboscia spp., quantified in the diol saturation index (DSI) and diol chain length index (DCI), respectively. However, values of these indices in surface sediments show no relationship with annual mean SST of the overlying water. It remains unknown what determines the DSI, although our data suggests that it may be affected by diagenesis, while the relationship between temperature and DCI may be different for different Proboscia species. In addition, contributions of algae other than Proboscia diatoms may affect both indices, although our data provide no direct evidence for additional long chain 1,14-alkyl diol sources. Two other indices using the abundance of 1,14-diols vs. 1,13-diols and C30 1,15-diols have previously been applied as indicators for upwelling intensity at different locations. The geographical distribution of their values supports the use of 1,14 diols vs. 1,13 diols [C28 + C30 1,14-diols]/[(C28 + C30 1,13-diols) + (C28 + C30 1,14-diols)] as a general indicator for high nutrient or upwelling conditions.