690 resultados para Lonicera japonica Thunb.
Resumo:
Maestrichtian to Holocene calcareous nannofossils from two closely spaced sites on the upper continental rise some 100 miles (161 km) southeast of Atlantic City, New Jersey, were zoned in order to help date a major canyon-cutting event in the late Miocene and to delineate and correlate other hiatuses with seismic stratigraphy. Mid-middle Eocene through middle Miocene sediments (Zones CP14 to CN6) were not recovered in these holes, but nearly all other zones are accounted for. The Eocene section is described in a companion chapter (Applegate and Wise, 1987, doi:10.2973/dsdp.proc.93.118.1987). Nannofossils are generally sparse and moderately preserved in the clastic sediments of Site 604. Sedimentation rates are extremely high for the upper Pleistocene (201 m/m.y. minimum) above a hiatus calculated to span 0.44 to 1.1 Ma. The associated disconformity is correlated with local seismic reflection Horizon Pr . Sedimentation rates continue to be high (93 m/m.y.) down to a second hiatus in the upper Pliocene dated from about 2.4 to 2.9 (or possibly 3.3) Ma. The disconformity associated with this hiatus is correlated with local seismic reflection Horizon P2 and regional Reflector Blue, which can be interpreted to mark either the onset of Northern Hemisphere continental glaciation or circulation changes associated with the closure of the Central American Seaway. Sedimentation rates in the pre-glacial lower Pliocene are only about a third those in the glacial upper Pliocene. A prominent disconformity in the upper Miocene marks a major lithologic boundary that separates Messinian(?) glauconitic claystones above from lower Tortonian conglomeratic debris flows and turbidites below. The debris flows recovered are assigned to nannofossil Zones CN8a and CN7, but drilling difficulties prevented penetration of the bottom of this sequence some 100 m below the terminal depth of the hole. Correlation of the lower bounding seismic reflector (M2/Merlin?) to a drift sequence drilled on the lower rise at DSDP Site 603, however, predicts that the debris flows began close to the beginning of the late Miocene (upper Zone CN6 time) at about 10.5 Ma. The debris flows represent a major canyon-cutting event that we correlate with the beginning of the particularly severe late Miocene glaciations believed to be associated with the formation of the West Antarctic Ice Sheet. The existence of these spectacular debris flows strongly suggest that the late Miocene glacio-eustatic low stand occurred during Vail Cycle TM3.1 (lower Tortonian) rather than during Vail Cycle TM3.2 (Messinian) as originally published. Beneath a set of coalesced regional disconformities centered upon seismic reflection Horizon Au, coccoliths are abundant and in general are moderately preserved at Site 605 in a 619-m carbonate section extending from the middle Eocene Zone CP13b to the upper Maestrichtian Lithraphidites quadratus Zone. Sedimentation rates are 37 m/m.y. in the Eocene down to a condensed interval near the base (Zone CP9). A disconformity is suspected near the Eocene/Paleocene boundary. Sedimentation rates for the upper Paleocene Zone CP8 are similar to those of the Eocene, but Zones CP7 and CP6 lie within another condensed interval. The highest Paleocene rates are 67 m/m.y. down through Zones CP5 and CP4 to a major disconformity that separates the upper Paleocene from the Danian. This hiatus spans about 2.6 m.y. (upper Zone CP3 to lower Zone CP2) and corresponds to the major sea-level drop at the base of Vail Cycle TE2.1. As the most prominent break in this Paleogene section, it may correspond to seismic reflection Horizon A* of the North American Basin. Sedimentation rates from this point to the Cretaceous/Tertiary boundary drop to 11 m/m.y., still high for a Paleocene DSDP section. No major break in deposition could be detected at the Cretaceous/Tertiary boundary.
Resumo:
Calcareous nannofossils were encountered at only one of the sites (435) drilled during DSDP Leg 56. Cores from Hole 435A yield fairly diverse early and late Pliocene assemblages. The section shows considerable reworking, however. Three to five biostratigraphic datum events provide a reasonable biochronology. The datums range from about 3.3 Ma in Core 11 to about 1.8 Ma in Core 3. Paleobiogeographic data indicate relatively stable and warm climatic conditions in this area in the early Pliocene, becoming more unstable in the late Pliocene when the cosmopolitan species become dominant.
Resumo:
Radiolarians were observed at all five sites drilled during DSDP Leg 58. Three sites (442, 443, 444) are south of Japan in the Shikoku Basin. The remaining two sites (445, 446) are east of Okinawa, in the Daito Ridge and Basin areas. The observations made on radiolarians during Leg 58 are understood best by considering these two areas separately. The basement ages, preservation, diagenesis, and paleoecology are similar within each area, but different between the two areas. The radiolarian zones of Riedel and Sanfilippo (1978) were used to determine the sediment age. Because of the mixed nature of the fauna, there was an opportunity to test the tropical zonation in middlelatitude sediments. A middle- to high-latitude biostratigraphy for the Pliocene and Pleistocene has been formulated (Hays, 1970; Kling, 1973; Foreman, 1975), but there is no Miocene radiolarian zonation for these latitudes. The tropical elements of the present fauna are sufficient to use the low-latitude zonation, although there is a loss of resolution in the Pleistocene. Because of poor preservation, zone boundaries are indistinct in much of the cored sediment. Determination of abundance in any sample is always subjective and varies among investigators. This work was in its final stages at the publication of Westberg and Riedel (1978), and the guidelines outlined therein are not closely followed. The abundances recorded in Tables 1 through 5 are based on strewn slides which were searched entirely if an individual of a species was found, or for 8 to 10 minutes if the species was not found.
Resumo:
During Ocean Drilling Program Leg 120, an almost complete Paleogene sediment section on the Kerguelen Plateau in the southern Indian Ocean was recovered. The biostratigraphy of radiolarians from these sediments at Sites 748 and 749 is studied. A biostratigraphic framework established in low and middle latitudes is not applicable because of the absence of most zonal marker species. Biogenic opal is present only in middle Eocene to Oligocene sediments, and three new zones-Lychnocanoma conica, Axoprunum (?) irregularis, and Eucyrtidium spinosum zones-are proposed. The Paleogene antarctic radiolarian fauna is different from that in low and middle latitudes. Three new species, Axoprunum (?) irregularis, Eucyrtidium cheni, and Eucyrtidium spinosum, are described.
Resumo:
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.70' E, 51°39.30' N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.
Resumo:
A total of 35 calcareous nannofossil datums were found in the Neogene sediments recovered at five sites (Sites 803-807) on the Ontong Java Plateau in the equatorial Pacific during Ocean Drilling Program Leg 130. Among them, 12 datums in the Pleistocene-upper Pliocene sequences were correlated with magnetostratigraphy. Pliocene and Miocene calcareous nannofossil assemblages in 289 samples obtained from Holes 804C, 805B, 805C, and 806B were studied. Reticulofenestra coccolith size distribution patterns in these Pliocene-Miocene sediments were also revealed through the present investigation.
Resumo:
Seven sites drilled in the central New Hebrides Island Arc during Ocean Drilling Program Leg 134 yielded varying quantities of upper Eocene through Pleistocene calcareous nannofossils. Most of the Miocene and Pliocene strata were absent from Sites 827-831 drilled along the collisional boundary between the Australia and Pacific plates where the North d'Entrecasteaux Ridge and Bougainville Guyot are being subducted. Sites 832 and 833, drilled in the intra-arc North Aoba Basin, contained upper Miocene through Pleistocene and early Pliocene through Pleistocene nannofossils, respectively. Detailed range charts displaying species abundances and age interpretations are presented for all of the sites. Despite problems of reworked assemblages, poor preservation, overgrowths and/or dilution from volcaniclastics, the nannofossil biostratigraphy delineates several repeated sections at Site 829 in the accretionary prism adjacent to Espiritu Santo Island. Paleogene pelagic sediments equivalent to those in a reference section at Site 828 appear to have been scraped from the downgoing North d'Entrecasteaux Ridge and accreted onto the forearc during the Pleistocene. Other sediments in the forearc include Pleistocene olistostromal trench-fill deposits containing clasts of various ages and compositions. Some of the clasts and olistoliths have affinities to rocks exposed on the neighboring islands and environs, whereas others are of uncertain origin. The matrix of the olistostromes is predominately Pleistocene, however, matrices of mixed nannofossil ages are frequently encountered. Comparisons of the mixed nannofossil ages in the matrices with sedimentological and structural data suggest that sediment mixing resulting from fault movement is subordinate to that occurring during deposition.
Resumo:
High-resolution palynological analysis on annually laminated sediments of Sihailongwan Maar Lake (SHL) provides new insights into the Holocene vegetation and climate dynamics of NE China. The robust chronology of the presented record is based on varve counting and AMS radiocarbon dates from terrestrial plant macro-remains. In addition to the qualitative interpretation of the pollen data, we provide quantitative reconstructions of vegetation and climate based on the method of biomization and weighted averaging partial least squares regression (WA-PLS) technique, respectively. Power spectra were computed to investigate the frequency domain distribution of proxy signals and potential natural periodicities. Pollen assemblages, pollen-derived biome scores and climate variables as well as the cyclicity pattern indicate that NE China experienced significant changes in temperature and moisture conditions during the Holocene. Within the earliest phase of the Holocene, a large-scale reorganization of vegetation occurred, reflecting the reconstructed shift towards higher temperatures and precipitation values and the initial Holocene strengthening and northward expansion of the East Asian summer monsoon (EASM). Afterwards, summer temperatures remain at a high level, whereas the reconstructed precipitation shows an increasing trend until approximately 4000 cal. yr BP. Since 3500 cal. yr BP, temperature and precipitation values decline, indicating moderate cooling and weakening of the EASM. A distinct periodicity of 550-600 years and evidence of a Mid-Holocene transition from a temperature-triggered to a predominantly moisture-triggered climate regime are derived from the power spectra analysis. The results obtained from SHL are largely consistent with other palaeoenvironmental records from NE China, substantiating the regional nature of the reconstructed vegetation and climate patterns. However, the reconstructed climate changes contrast with the moisture evolution recorded in S China and the mid-latitude (semi-)arid regions of N China. Whereas a clear insolation-related trend of monsoon intensity over the Holocene is lacking from the SHL record, variations in the coupled atmosphere-Pacific Ocean system can largely explain the reconstructed changes in NE China.