523 resultados para Kaulinitic clay
Resumo:
This paper discusses the distribution of clay minerals and identification of their assemblages in relation to sedimentary facies encountered during DSDP Leg 63 drilling off southern California and Baja California. We also consider how these assemblages are determined by source areas and changes in general paleogeographic environments during different periods of sedimentation.
Resumo:
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice-rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner-fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.
Resumo:
The mineralogy of both bulk- and clay-sized fractions of samples from Sites 671, 672, and 674 of ODP Leg 110 was determined by X-ray diffraction. The major minerals include quartz, calcite, plagioclase feldspar, and the clay minerals smectite, illite, and kaolinite. The smectite is a dioctahedral montmorillonite and is derived primarily from degradation of volcanic ash. Percentage of smectite varies with sediment age; Miocene and Eocene sediments are the most smectite-rich. High smectite content tends to correlate with elevated porosity, presumably because of the ability of smectite clays to absorb significant amounts of interlayer water. Because of a change in physical properties, the decollement zone at Site 671 formed in sediments immediately subjacent to a section of smectite-rich, high-porosity, Miocene-age sediments. Sediments above the decollement at Site 671, as well as all sediments analyzed from Sites 672 and 674, contain nearly pure smectite characteristic of the alteration of volcanic ash. Within the decollement zone and underthrust sequence, however, the smectite contains up to 65% illite interlayers. Although the illite/smectite could be interpreted as detrital clay derived from South America, its absence in the sediments stratigraphically equivalent to the decollement and underthrust sequences at Sites 672 and 674 favors the interpretation that it originated by diagenetic alteration of pre-existing smectite similar to that in the overlying sediments. A significant percentage of the freshening of the pore waters observed in these zones could be due to the water released during smectite dehydration.