79 resultados para INTERMEDIATE-AGE
Resumo:
Late Pleistocene signals of calcium carbonate, organic carbon, and opaline silica concentration and accumulation are documented in a series of cores from a zonal/meridional/depth transect in the equatorial Atlantic Ocean to reconstruct the regional sedimentary history. Spectral analysis reveals that maxima and minima in biogenous sedimentation occur with glacial-interglacial cyclicity as a function of both (1) primary production at the sea surface modulated by orbitally forced variation in trade wind zonality and (2) destruction at the seafloor by variation in the chemical character of advected intermediate and deep water from high latitudes modulated by high-latitude ice volume. From these results a pattern emerges in which the relative proportion of signal variance from the productivity signal centered on the precessional (23 kyr) band decreases while that of the destruction signal centered on the obliquity (41 kyr) and eccentricity (100 kyr) periods increases below ~3600-m ocean depth.
Resumo:
Over the last several decades debates on the 'tempo and mode' of evolution have centered on the question whether morphological evolution preferentially occurs gradually or punctuated, i.e., with long periods of stasis alternating with short periods of rapid morphological change and generation of new species. Another major debate is focused on the question whether long-term evolution is driven by, or at least strongly influenced by changes in the environment, or by interaction with other life forms. Microfossils offer a unique opportunity to obtain the large datasets as well as the precision in dating of subsequent samples to study both these questions.We present high-resolution analyses of selected calcareous nannofossils from the deep-sea section recovered at ODP Site 1262 (Leg 208) in the South-eastern Atlantic. The studied section encompasses nannofossil Zones NP4-NP12 (equivalent to CP3-CP10) and Chrons C27r-C24n. We document more than 70 biohorizons occurring over an about 10 Myr time interval, (~62.5 Ma to ~52.5 Ma), and discuss their reliability and reproducibility with respect to previous data, thus providing an improved biostratigraphic framework, which we relate to magnetostratigraphic information, and present for two possible options of a new Paleocene stratigraphic framework based on cyclostratigraphy. This new framework enabled us to tentatively reconstruct steps in the evolution of early Paleogene calcareous nannoplankton through documentation of transitional morphotypes between genera and/or species and of the phylogenetic relations between the genera Fasciculithus, Heliolithus, Discoasteroides and Discoaster, as well as between Rhomboaster and Tribrachiatus. The exceptional record provided by the continuous, composite sequence recovered at Walvis Ridge allows us to describe the mode of evolution among calcareous nannoplankton: new genera and/or new species usually originated through branching of lineages via gradual, but relatively rapid, morphological transitions, as documented by the presence of intermediate forms between the end-member ancestral and descendant forms. Significant modifications in the calcareous nannofossil assemblages are often "related" to significant changes in environmental conditions, but the appearance of structural innovations and radiations within a single genus also occurred during "stable" environmental conditions. These lines of evidence suggest that nannoplankton evolution is not always directly triggered by stressed environmental conditions but could be also driven by endogenous biotic control.
Resumo:
he oxygen minimum zone (OMZ) off Vancouver Island was more oxygen depleted relative to modern conditions during the Allerød (~13.5 to 12.6 calendar kyr) and again from ~11 to 10 kyr. The timing of OMZ intensification is similar to that seen throughout the North Pacific, although the onset appears to have been delayed by ~1500 years off Vancouver Island. Radiocarbon dating of coeval benthic and planktonic foraminifera shows that between 16.0 and 12.6 kyr the age contrast between surface and intermediate waters (920 m depth) off Vancouver Island was similar to, or slightly less than, that today. There is no evidence of an increased age difference (i.e., decreased ventilation) during the deglaciation, particularly during the Allerød. However, sedimentary marine organic carbon concentration and mass accumulation rate increased substantially in the Allerød, suggesting that increased organic matter export was the principal cause of late Pleistocene OMZ intensification off Vancouver Island.
Resumo:
On the basis of 52 sediment cores, analyzed and dated at high resolution, the paleoceanography and climate of the Last Glacial Maximum (LGM) were reconstructed in detail for the Fram Strait and the eastern and central Arctic Ocean. Sediment composition and stable isotope data suggest three distinct paleoenvironments: (1) a productive region in the eastern to central Fram Strait and along the northern Barents Sea continental margin characterized by Atlantic Water advection, frequent open water conditions, and occasional local meltwater supply and iceberg calving from the Barents Sea Ice Sheet; (2) an intermediate region in the southwestern Eurasian Basin (up to 84-85°N) and the western Fram Strait characterized by subsurface Atlantic Water advection and recirculation, a moderately high planktic productivity, and a perennial ice cover that breaks up only occasionally; and (3) a central Arctic region (north of 85°N in the Eurasian Basin) characterized by a low-salinity surface water layer and a thick ice cover that strongly reduces bioproduction and bulk sedimentation rates. Although the total inflow of Atlantic Water into the Arctic Ocean may have been reduced during the LGM, its impact on ice coverage and halocline structure in the Fram Strait and southwestern Eurasian Basin was strong.
Resumo:
We present a detailed study of glacial/interglacial deep sea benthic ostracod assemblage variability at IODP Site U1314 (subpolar North Atlantic) in relation to the history of ice-rafting events and changes in deep ocean circulation over the past 170 ky. Our records of ostracod diversity, abundance and dissolution and sediment properties (IRD and CaCO3) show an excellent correspondence to high amplitude orbital and millennial variability observed in the climate records (d13C and d18O) from neighboring deep water sites, suggesting that the benthic meiofauna fluctuates synchronously with the prevailing oceanographic conditions (surface ocean conditions, deep ocean circulation and water temperature and food flux). Krithe (dominant), Argilloecia and Cytheropteron are the most abundant and diverse genera in association with Rockallia enigmatica. Three ostracod assemblages are recognized. The genera Pennyella, Argilloecia, Pelecocythere, Ambocythere, Pseudobosquetina, Bradleya and Nannocythere are associated with interglacials and interstadials, and possibly reflect increased flux of food to the sediments and more vigorous NADW formation. A transitional assemblage composed of species of Cytheropteron, Xestoleberis and Eucythere is restricted to climatic transitions and indicate moderate environmental conditions and seasonal productivity. A glacial/stadial assemblage is characterized by a temporal predominance of either intermediate-depth and shallow water Arctic/subarctic species (belonging to Cytheropteron, Polycope, Pedicythere, Swainocythere, Cluthia, Heterocyprideis, Elofsonella and Finmarchinella) or abyssal North Atlantic ostracods (Bythocythere, Dutoitella, Bathycythere and Bythocypris). The influx of high latitude taxa can be partially explained by ice-rafting, but may also represent a shift of the location of intermediate and deep water convection to the area south of Iceland. Therefore the combination of species characteristic of different watermasses during glacials may reflect shifts in the influence of high nutrient southern source water (e.g. AABW) vs. low nutrient GNAIW during glacials.
Resumo:
The terrigenous sediment proportion of the deep sea sediments from off Northwest Africa has been studied in order to distinguish between the aeolian and the fluvial sediment supply. The present and fossil Saharan dust trajectories were recognized from the distribution patterns of the aeolian sediment. The following timeslices have been investigated: Present, 6,000, 12,000 and 18,000 y. B. P. Furthermore, the quantity of dust deposited off the Saharan coast has been estimated. For this purpose, 80 surface sediment samples and 34 sediment cores have been analysed. The stratigraphy of the cores has been achieved from oxygen isotopic curves, 14C-dating, foraminiferal transfer temperatures, and carbonate contents. Silt sized biogenic opal generally accounts for less than 2 % of the total insoluble sediment proportion. Only under productive upwelling waters and off river mouths, the opal proportion exceeds 2 % significantly. The modern terrigenous sediment from off the Saharan coast is generally characterized by intensely stained quartz grains. They indicate an origin from southern Saharan and Sahelian laterites, and a zonal aeolian transport in midtropospheric levels, between 1.5 an 5.5 km, by 'Harmattan' Winds. The dust particles follow large outbreaks of Saharan air across the African coast between 15° and 21° N. Their trajectories are centered at about 18° N and continue further into a clockwise gyre situated south of the Canary Islands. This course is indicated by a sickle-shaped tongue of coarser grain sizes in the deep-sea sediment. Such loess-sized terrigenous particles only settle within a zone extending to 700 km offshore. Fine silt and clay sized particles, with grain sizes smaller than 10- 15 µm, drift still further west and can be traced up to more than 4,000 km distance from their source areas. Additional terrigenous silt which is poor in stained quartz occurs within a narrow zone off the western Sahara between 20° and 27° N only. It depicts the present dust supply by the trade winds close to the surface. The dust load originates from the northwestern Sahara, the Atlas Mountains and coastal areas, which contain a particularly low amount of stained quartz. The distribution pattern of these pale quartz sediments reveals a SSW-dispersal of dust being consistent with the present trade wind direction from the NNE. In comparison to the sediments from off the Sahara and the deeper subtropical Atlantic, the sediments off river mouths, in particular off the Senegal river, are characterized by an additional input of fine grained terrigenous particles (< 6 µm). This is due to fluvial suspension load. The fluvial discharge leads to a relative excess of fine grained particles and is observed in a correlation diagram of the modal grain sizes of terrigenous silt with the proportion of fine fraction (< 6 µm). The aeolian sediment contribution by the Harmattan Winds strongly decreased during the Climatic Optimum at 6,000 y. B. P. The dust discharge of the trade winds is hardly detectable in the deep-sea sediments. This probably indicates a weakened atmospheric circulation. In contrast, the fluvial sediment supply reached a maximum, and can be traced to beyond Cape Blanc. Thus, the Saharan climate was more humid at 6,000 y B. P. A latitudinal shift of the Harmattan driven dust outbreaks cannot be observed. Also during the Glacial, 18,000 y. B. P., Harmattan dust transport crossed the African coast at latitudes of 15°-20° N. Its sediment load increased intensively, and markedly coarser grains spread further into the Atlantic Ocean. An expanded zone of pale-quart sediments indicates an enhanced dust supply by the trade winds blowing from the NE. No synglacial fluvial sediment contribution can be recognized between 12° and 30° N. This indicates a dry glacial climate and a strengthened stmospheric circulation over the Sahelian and Saharan region. The climatic transition pahes, at 12, 000 y. B. P., between the last Glacial and the Intergalcial, which is compareable to the Alerod in Europe, is characterized by an intermediate supply of terrigenous particles. The Harmattan dust transport wa weaker than during the Glacial. The northeasterly trade winds were still intensive. River supply reached a first postglacial maximum seaward of the Senegal river mouth. This indicates increasing humidity over the southern Sahara and a weaker atmospheric circulation as compared to the glacial. The accumulation rates of the terrigenous silt proportion (> 6 µm) decrcase exponentially with increasing distance from the Saharan coast. Those of the terrigenous fine fraction (< 6 µm) follow the same trend and show almost similar gradients. Accordingly, also the terrigenous fine fraction is believed to result predominantly from aeolian transport. In the Atlantic deep-sea sediments, the annual terrigenous sediment accumulation has fluctuated, from about 60 million tons p. a. during the Late Glacial (13,500-18,000 y. B. P, aeolian supply only) to about 33 million tons p. a. during the Holocene Climatic Optimum (6,000-9,000 y. B. P, mainly fluvial supply), when the river supply has reached a maximum, and to about 45 million tons p. a. during the last 4,000 years B. P. (fluvial supply only south of 18° N).
Resumo:
Eight- to ten-point depth profiles (from 1200 to 4800 m water depth) of oxygen and carbon isotopic values derived from benthic foraminifera, averaged over selected times in the past 160 ka, are presented. The data are from 10 sediment cores off eastern New Zealand, mainly North Chatham Rise. This lies under the Deep Western Boundary Current in the Southwest Pacific and is the main point of entry for several water masses into the Pacific Ocean. The benthic isotopic profiles are related to the structure of water masses at present and inferred for the past. These have retained a constant structure of Lower Circumpolar Deep Water-Upper Circumpolar Deep Water/North Pacific Deep Water-Antarctic Intermediate Water with no apparent changes in the depths of water mass boundaries between glacial and interglacial states. Sortable silt particle size data for four cores are also examined to show that the vigour of the inflow to the Pacific, while variable, appears to have remained fairly constant on average. Among the lowest Last Glacial Maximum values of benthic d13C in the world ocean (-1.03 per mil based on Cibicidoides wüllerstorfi) occurs here at ~2200 m. Comparable values occur in the Atlantic sector of the Southern Ocean, while those from the rest of the Pacific are distinctly higher, confirming that the Southern Ocean was the source for the unventilated/nutrient-enriched water seen here. Oxygen and carbon isotopic data are compatible with a glacial cold deep water mass of high salinity, but lower nutrient content (or better ventilated), below ~3500 m depth. This contrasts with the South Atlantic where unventilated/nutrient-enriched water extends all the way to the sea bed. Comparison with previous studies also suggests that the deeper reaches of the Antarctic Circumpolar Current below ~3500 m are not homogeneous all around the Southern Ocean, with the Kerguelen Plateau and/or the Macquarie-Balleny Ridges posing barriers to the eastward spread of the deepest low-d13C water out of the South Atlantic in glacials. These barriers, combined with inferred high density of bottom waters, restricted inter-basin exchange and allow three glacial domains dominated by bottom waters from Weddell Sea, Adelie Coast and Ross Sea to be defined. We suggest that the Ross Sea was the main source of the deep water entering the Pacific below ~3500 m.
Resumo:
Reconstruction of regional climate and the Okhotsk Sea (OS) environment for the Last Glacial Maximum (LGM), deglaciation and Holocene were performed on the basis of high-resolution records of ice rafted debris (IRD), CaCO3, opal, total organic carbon (TOC), biogenic Ba (Ba_bio) and redox sensitive element (Mn, Mo) content, and diatom and pollen results of four cores that form a north-southern transect. Age models of the studied cores were earlier established by AMS 14C data, oxygen - isotope chronostratigraphy and tephrochronology. According to received results, since 25 ka the regional climate and OS environmental conditions have changed synchronously with LGM condition, cold Heinrich event 1, Bølling -Allerød (BA) warming, Younger Dryas (YD) cooling and Pre-Boreal (PB) warming recorded in the Greenland ice core, North Atlantic sediment, and China cave stalagmites. Calculation of IRD MAR in sediment of north-south transect cores indicate an increase of sea ice formation several times in the glacial OS as compared to the Late Holocene. Accompanying ice formation, increased brine rejection and the larger potential density of surface water at the north shelf due to a drop of glacial East Asia summer monsoon precipitation and Amur River run off, led to strong enhancement of the role of the OS in glacial North Pacific Intermediate Water (NPIW) formation. The remarkable increase in OS productivity during BA and PB warming was probably related with significant reorganisation of the North Pacific deep water ventilation and nutrient input into the NPIW and OS Intermediate Water (OSIW). Seven Holocene OS millennial cold events based on the elevated values of the detrended IRD stack record over the IRD broad trend in the sediments of the studied cores have occurred synchronously with cold events recorded in the North Atlantic, Greenland ice cores and China cave stalagmites after 9 ka. Diatom production in the OS were mostly controlled by sea ice cover changes and surface water stratification induced by sea-ice melting; therefore significant opal accumulation in sediments of this basin begin from 4-6 ka ago simultaneously with a remarkable decrease of sea ice cover.
Resumo:
The modern Aegean Sea is an important source of deep water for the eastern Mediterranean. Its contribution to deep water ventilation is known to fluctuate in response to climatic variation on a decadal timescale. This study uses marine micropalaeontological and stable isotope data to investigate longer-term variability during the late glacial and Holocene, in particular that associated with the deposition of the early Holocene dysoxic/anoxic sapropel S1. Concentrating on the onset of sapropel-forming conditions, we identify the start of 'seasonal' stratification and highlight a lag in d18O response of the planktonic foraminifer N. pachyderma to termination T1b as identified in the d18O record of G. ruber. By use of a simple model we determine that this offset cannot be a function of bioturbation effects. The lag is of the order of 1 kyr and suggests that isolation of intermediate/deep water preceded the start of sapropel formation by up to 1.5 kyr. Using this discovery, we propose an explanation for the major unresolved problem in sapropel studies, namely, the source of nutrient supply required for export productivity to reach levels needed for sustained sapropel deposition. We suggest that nutrients had been accumulating in a stagnant basin for 1-1.5 kyr and that these accumulated resources were utilized during the deposition of S1. In addition, we provide a first quantitative estimate of the diffusive (1/e) mixing timescale for the eastern Mediterranean in its "stratified" sapropel mode, which is of the order of 450 years.
Resumo:
On the base of data on benthic foraminifera and sediment biogeochemistry (contents of total organic carbon, calcium carbonate and biogenic opal) in two cores (1265 and 1312 m water depth) from the southeastern Sakhalin slope and one core (839 m water depth) from the southwestern Kamchatka slope variations of the oxygen minimum zone during the last 50 ka in the Okhotsk Sea are reconstructed. The oxygen minimum zone was less pronounced during cooling in the MIS 2 that is suggested to be caused by maximal expansion of the sea ice cover, decrease of marine productivity and increase of production of oxygenated Okhotsk Sea Intermediate Water (OSIW). Two-step-like strengthening of oxygen minimum zone during warmings in the Terminations 1a and 1b was combined with (1) enhanced oxygen consumption due to decomposition of large amount of organic matter in the water column and bottom sediments due to increased marine productivity and supply of terrigenous material from submerged northern shelves; (2) sea ice cover retreat and reduction of OSIW production; (3) freely inflow of the oxygen-depleted intermediate water mass from the North Pacific.
Resumo:
Models indicate that a complete shutdown of deep and intermediate water production is a possible consequence of extreme climate conditions in the northern North Atlantic, and the high ratio of 231Pa to 230Th on Bermuda Rise is evidence that this might have happened ?17 ka during Heinrich event 1 (H1). However, new radiocarbon data from bivalves that lived at ?4.6 km on the Bermuda Rise during H1 lead to a different conclusion. The bivalve data do indeed indicate ventilation of the deep western North Atlantic was suppressed during H1 but not as much as it was during the last glacial maximum. We propose that high diatom flux to the Bermuda Rise during H1 is at least in part responsible for increased 231Pa/230Th at that time. Although we cannot say for sure why opal production was so high in a gyre center location at that time, increased leakage of silica rich waters from the Southern Ocean to the North Atlantic is one possibility.
Resumo:
Benthic foraminiferal Cd/Ca from a Florida Current sediment core documents the history of the northward penetration of southern source waters within the surface return flow of the Atlantic meridional overturning circulation (AMOC). Cd seawater estimates (CdW) indicate that intermediate-depth southern source waters crossed the equator and contributed to the Florida Current during the Bølling-Allerød warm period of the last deglaciation, consistent with evidence of only a modest AMOC reduction compared to today. The CdW estimates also provide the first paleoceanographic evidence of a reduction in the influence of intermediate-depth southern source waters within the Florida Current during the Younger Dryas, a deglacial cold event characterized by a weak North Atlantic AMOC. Our results reveal a close correspondence between the northward penetration of intermediate-depth southern source waters and the influence of North Atlantic Deep Water, suggesting a possible link between intermediate-depth southern source waters and the strength of the Atlantic AMOC.
Resumo:
Results from two deep sea cores from northeast of Newfoundland at 1251 and 2527 m water depth, respectively, indicate that during the time period from 160,000 to 10,000 years BP, ice rafting events in the Labrador Sea were accompanied by rapid variations in deep and surface water circulation. Twelve ice-rafting events occurred, each coinciding with high concentrations of detrital carbonate and oxygen isotopic depletion of both surface and bottom waters. Eleven of these can be correlated with the North Atlantic Heinrich events H1-H11. The remaining very conspicuous ice-rafting event took place early in MIS substage 5e, at a time when the planktic faunal assemblage suggests marked warming of the sea surface. In the shallower core, benthic d13C values rise from a minimum during the deglaciation to peak substage 5e values following the last ice-rafting event, indicating that the ventilation of intermediate depths was renewed after the deglaciation was complete and continued throughout substage 5e. The benthic foraminifera suggest that this well-ventilated water mass was comparable to the modern Labrador Sea Water (LSW). The benthic faunas suggest that a relatively warm intermediate water mass entered the SE Labrador Sea during Heinrich events. Generally low benthic d13C values indicate that this water mass was poorly ventilated and rich in inorganic nutrients. Isotope data and benthic faunal distributions indicate that North Atlantic Deep Water (NADW) formed in the Norwegian-Greenland Sea reached the SE Labrador Sea between the Heinrich events.
Resumo:
Dinocysts from cores collected in the Chukchi Sea from the shelf edge to the lower slope were used to reconstruct changes in sea surface conditions and sea ice cover using modern analogue techniques. Holocene sequences have been recovered in a down-slope core (B15: 2135 m, 75°44'N, sedimentation rate of ~1 cm/kyr) and in a shelf core (P1: 201 m, 73°41'N, sedimentation rate of ~22 cm/kyr). The shelf record spanning about 8000 years suggests high-frequency centennial oscillations of sea surface conditions and a significant reduction of the sea ice at circa 6000 and 2500 calendar (cal) years B.P. The condensed offshore record (B15) reveals an early postglacial optimum with minimum sea ice cover prior to 12,000 cal years B.P., which corresponds to a terrestrial climate optimum in Bering Sea area. Dinocyst data indicate extensive sea ice cover (>10 months/yr) from 12,000 to 6000 cal years B.P. followed by a general trend of decreasing sea ice and increasing sea surface salinity conditions, superimposed on large-amplitude millennial-scale oscillations. In contrast, d18O data in mesopelagic foraminifers (Neogloboquadrina pachyderma) and benthic foraminifers (Cibicides wuellerstorfi) reveal maximum subsurface temperature and thus maximum inflow of the North Atlantic water around 8000 cal years B.P., followed by a trend toward cooling of the subsurface to bottom water masses. Sea-surface to subsurface conditions estimated from dinocysts and d18O data in foraminifers thus suggest a decoupling between the surface water layer and the intermediate North Atlantic water mass with the existence of a sharp halocline and a reverse thermocline, especially before 6000 years B.P. The overall data and sea ice reconstructions from core B15 are consistent with strong sea ice convergence in the western Arctic during the early Holocene as suggested on the basis of climate model experiments including sea ice dynamics, matching a higher inflow rate of North Atlantic Water.