318 resultados para Halocarbons, rainforest, phytoplankton bloom, methyl chloride, methyl bromide, methyl iodide
Resumo:
We investigated the effect of CO2 and primary production on the carbon isotopic fractionation of alkenones and particulate organic matter (POC) during a natural phytoplankton bloom dominated by the coccolithophore Emiliania huxleyi. In nine semi-closed mesocosms (~11 m**3 each), three different CO2 partial pressures (pCO2) in triplicate represented glacial (~180 ppmv CO2), present (380 ppmv CO2), and year 2100 (~710 ppmv CO2) CO2 conditions. The largest shift in alkenone isotopic composition (4-5 per mil) occurred during the exponential growth phase, regardless of the CO2 concentration in the respective treatment. Despite the difference of ~500 ppmv, the influence of pCO2 on isotopic fractionation was marginal (1-2 per mil). During the stationary phase, E. huxleyi continued to produce alkenones, accumulating cellular concentrations almost four times higher than those of exponentially dividing cells. Our isotope data indicate that, while alkenone production was maintained, the interaction of carbon source and cellular uptake dynamics by E. huxleyi reached a steady state. During stationary phase, we further observed a remarkable increase in the difference between d13C of bulk organic matter and of alkenones spanning 7-12 per mil. We suggest that this phenomenon is caused mainly by a combination of extracellular release of 13C-enriched polysaccharides and subsequent particle aggregation induced by the production of transparent exopolymer particles (TEP).
Resumo:
The potential impact of rising carbon dioxide (CO2) on carbon transfer from phytoplankton to bacteria was investigated during the 2005 PeECE III mesocosm study in Bergen, Norway. Sets of mesocosms, in which a phytoplankton bloom was induced by nutrient addition, were incubated under 1x (~350 µatm), 2x (~700 µatm), and 3x present day CO2 (~1050 µatm) initial seawater and sustained atmospheric CO2 levels for 3 weeks. 13C labelled bicarbonate was added to all mesocosms to follow the transfer of carbon from dissolved inorganic carbon (DIC) into phytoplankton and subsequently heterotrophic bacteria, and settling particles. Isotope ratios of polar-lipid-derived fatty acids (PLFA) were used to infer the biomass and production of phytoplankton and bacteria. Phytoplankton PLFA were enriched within one day after label addition, whilst it took another 3 days before bacteria showed substantial enrichment. Group-specific primary production measurements revealed that coccolithophores showed higher primary production than green algae and diatoms. Elevated CO2 had a significant positive effect on post-bloom biomass of green algae, diatoms, and bacteria. A simple model based on measured isotope ratios of phytoplankton and bacteria revealed that CO2 had no significant effect on the carbon transfer efficiency from phytoplankton to bacteria during the bloom. There was no indication of CO2 effects on enhanced settling based on isotope mixing models during the phytoplankton bloom, but this could not be determined in the post-bloom phase. Our results suggest that CO2effects are most pronounced in the post-bloom phase, under nutrient limitation.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
A time series of fCO2, SST, and fluorescence data was collected between 1995 and 1997 by a CARIOCA buoy moored at the DyFAMed station (Dynamique des Flux Atmospheriques en Mediterranée) located in the northwestern Mediterranean Sea. On seasonal timescales, the spring phytoplankton bloom decreases the surface water fCO2 to approximately 290 µatm, followed by summer heating and a strong increase in fCO2 to a maximum of approximately 510 µatm. While the DELTA fCO2 shows strong variations on seasonal timescales, the annual average air-sea disequilibrium is only 2 µatm. Temperature-normalized fCO2 shows a continued decrease in dissolved CO2 throughout the summer and fall at a rate of approximately 0.6 µatm/d. The calculated annual air-sea CO2 transfer rate is -0.10 to -0.15 moles CO2 m-2 y-1, with these low values reflecting the relatively weak wind speed regime and small annual air-sea fCO2 disequilibrium. Extrapolating this rate over the whole Mediterranean Sea would lead to a flux of approximately -3 * 10**12 to -4.5 * 10**12 grams C/y, in good agreement with other estimates. An analysis of the effects of sampling frequency on annual air-sea CO2 flux estimates showed that monthly sampling is adequate to resolve the annual CO2 flux to within approximately ±10 - 18% at this site. Annual flux estimates made using temperature-derived fCO2 based on the measured fCO2-SST correlations are in agreement with measurement-based calculations to within ± 7-10% (depending on the gas transfer parameterization used), and suggest that annual CO2 flux estimates may be reasonably well predicted in this region from satellite or model-derived SST and wind speed information.
Resumo:
The growth of populations is known to be influenced by dispersal, which has often been described as purely diffusive (Kierstead and Slobodkin, 1953; Okubo, 1980). In the open ocean, however, the tendrils and filaments of phytoplankton populations provide evidence for dispersal by stirring (Gower et al., 1980, doi:10.1038/288157a0; Holligan et al., 1993, doi:10.1029/93GB01731). Despite the apparent importance of horizontal stirring for plankton ecology, this process remains poorly characterized. Here we investigate the development of a discrete phytoplankton bloom, which was initiated by the iron fertilization of a patch of water (7 km in diameter) in the Southern Ocean (Boyd et al., 2000, doi:10.1038/35037500). Satellite images show a striking, 150-km-long bloom near the experimental site, six weeks after the initial fertilization. We argue that the ribbon-like bloom was produced from the fertilized patch through stirring, growth and diffusion, and we derive an estimate of the stirring rate. In this case, stirring acts as an important control on bloom development, mixing phytoplankton and iron out of the patch, but also entraining silicate. This may have prevented the onset of silicate limitation, and so allowed the bloom to continue for as long as there was sufficient iron. Stirring in the ocean is likely to be variable, so blooms that are initially similar may develop very differently.
Resumo:
Dissolved and particulate organic matter was measured during six cruises to the southern Ross Sea. The cruises were conducted during late austral winter to autumn from 1994 to 1997 and included coverage of various stages of the seasonal phytoplankton bloom. The data from the various years are compiled into a representative seasonal cycle in order to assess general patterns of dissolved organic matter (DOM) and particulate organic matter (POM) dynamics in the southern Ross Sea. Dissolved organic carbon (DOC) and particulate organic carbon (POC) were at background concentrations of approximately 42 and 3 µM C, respectively, during the late winter conditions in October. As the spring phytoplankton bloom progressed, organic matter increased, and by January DOC and POC reached as high as 30 and 107 µM C, respectively, in excess of initial wintertime conditions. Stocks and concentrations of DOC and POC returned to near background values by autumn (April). Approximately 90% of the accumulated organic matter was partitioned into POM, with modest net accumulation of DOM stocks despite large net organic matter production and the dominance of Phaeocystis antarctica. Changes in NO3 concentration from wintertime values were used to calculate the equivalent biological drawdown of dissolved inorganic carbon (DICequiv). The fraction of DICequiv drawdown resulting in net DOC production was relatively constant (ca. 11%), despite large temporal and spatial variability in DICequiv drawdown. The C : N (molar ratio) of the seasonally produced DOM had a geometric mean of 6.2 and was nitrogen-rich compared to background DOM. The DOM stocks that accumulate in excess of deep refractory background stocks are often referred to as "semi-labile" DOM. The "semi-labile" pool in the Ross Sea turns over on timescales of about 6 months. As a result of the modest net DOM production and its lability, the role DOM plays in export to the deep sea is small in this region.
Resumo:
Organochlorine compounds (OC) were determined in Arctic bivalves (Mya truncata, Serripes groenlan-dicus, Hiatella arctica and Chlamys islandica) from Svalbard with regard to differences in geographic location, species and variations related to their size and age. Higher chlorinated polychlorinated biphenyls (PCB 101-PCB 194), chlordanes and alpha-hexachlorocyclohexane (alpha-HCH) were consistently detected in the bivalves and PCBs dominated the OC load in the organisms. OC concentrations were highest in Mya truncata and the lowest in Serripes groenlandicus. Species-specific OC levels were likely related to differences in the species' food source, as indicated by the d13C results, rather than size and age. Higher OC concentrations were observed in bivalves from Kongsfjorden compared to the northern sampling locations Liefdefjorden and Sjuoyane. The spatial differences might be related to different water masses influencing Kongsfjorden (Atlantic) and the northern locations (Arctic), with differing phytoplankton bloom situations.