228 resultados para Glass flakes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five widespread upper Cenozoic tephra layers that are found within continental sediments of the western United States have been correlated with tephra layers in marine sediments in the Humboldt and Ventura basins of coastal California by similarities in major-and trace-element abundances; four of these layers have also been identified in deep-ocean sediments at DSDP sites 34, 36, 173, and 470 in the northeastern Pacific Ocean. These layers, erupted from vents in the Yellowstone National Park area of Wyoming and Idaho (Y), the Cascade Range of the Pacific Northwest (C), and the Long Valley area, California (L), are the Huckleberry Ridge ash bed (2.0 Ma, Y), Rio Dell ash bed (ca. 1.5 Ma, C), Bishop ash bed (0.74 Ma, L), Lava Creek B ash bed (0.62 Ma, Y), and Loleta ash bed (ca. 0.4 Ma, C). The isochronous nature of these beds allows direct comparison of chronologic and climatic data in a variety of depositional environments. For example, the widespread Bishop ash bed is correlated from proximal localities near Bishop in east-central California, where it is interbedded with volcanic and glacial deposits, to lacustrine beds near Tecopa, southeastern California, to deformed on-shore marine strata near Ventura, southwestern California, to deep-ocean sediments at site 470 in the eastern Pacific Ocean west of northern Mexico. The correlations allow us to compare isotopic ages determined for the tephra layers with ages of continental and marine biostratigraphic zones determined by magnetostratigraphy and other numerical age control and also provide iterative checks for available age control. Relative age variations of as much as 0.5 m.y. exist between marine biostratigraphic datums [for example, highest occurrence level of Discoaster brouweri and Calcidiscus tropicus (= C. macintyrei)], as determined from sedimentation rate curves derived from other age control available at each of several sites. These discrepancies may be due to several factors, among which are (1) diachronism of the lowest and highest occurrence levels of marine faunal and floral species with latitude because of ecologic thresholds, (2) upward reworking of older forms in hemipelagic sections adjacent to the tectonically active coast of the western United States and other similar analytical problems in identification of biostratigraphic and magnetostratigraphic datums, (3) dissolution of microfossils or selective diagenesis of some taxa, (4) lack of precision in isotopic age calibration of these datums, (5) errors in isotopic ages of tephra beds, and (6) large variations in sedimentation rates or hiatuses in stratigraphic sections that result in age errors of interpolated datums. Correlation of tephra layers between on-land marine and deep-ocean deposits indicates that some biostratigraphic datums (diatom and calcareous nannofossil) may be truly time transgressive because at some sites, they are found above and, at other sites, below the same tephra layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report S concentrations and relative proportions of (SO4)2- and S2- in OL- and CPX-hosted glass inclusions and in host glassy lapilli from Miocene basaltic hyaloclastites drilled north and south of Gran Canaria during ODP Leg 157. Compositions of glass inclusions and lapilli resemble those of subaerial Miocene shield basalts on Gran Canaria and comprise mafic to more evolved tholeiitic to alkali basalt and basanite (10.3-3.7 wt.% MgO, 44.5-56.9 wt.% SiO2). Glass inclusions fall into three groups based on their S concentrations: a high-sulfur group (1050 to 5810 ppm S), an intermediate-sulfur group (510 to 1740 ppm S), and a low-sulfur group (<500 ppm S). The most S-rich inclusions have the highest and nearly constant proportion of sulfur dissolved as sulfate determined by electron microprobe measurements of SKa peak shift. Their average S6+/S_total value is 0.75+/-0.09, unusually high for ocean island basalt magmas. The low-sulfur group inclusions have low S6+/S_total ratios (0.08+/-0.05), whereas intermediate sulfur group inclusions show a wide range of S6+/S_total (0.05-0.83). Glassy lapilli and their crystal-hosted glass inclusions with S concentrations of 50 to 1140 ppm S have very similar S6+/S_total ratios of 0.36+/-0.06 implying that sulfur degassing does not affect the proportion of (SO4)2- and S2- in the magma. The oxygen fugacities estimated from S6+/S_total ratios and from Fe3+/Fe2+ ratios in spinel inclusions range from NNO-1.1 to NNO+1.8. The origin of S-rich magmas is unclear. We discuss (1) partial melting of a mantle source at relatively oxidized fO2 conditions, and (2) magma contamination by seawater either directly or through magma interaction with seawater-altered Jurassic oceanic crust. The intermediate sulfur group inclusions represent undegassed or slightly degassed magmas similar to submarine OIB glasses, whereas the low-sulfur group inclusions are likely to have formed from magmas significantly degassed in near-surface reservoirs. Mixing of these degassed magmas with stored volatile-rich ones or volatile-rich magma replenishing the chamber filled by partially degassed magmas may produce hybrid melts with strongly varying S concentrations and S6+/S_total ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Leg 87A holes, 45 ash layers were sampled in Recent to upper Pliocene strata. The main volcanogenic deposits came from single eruptions or subcontemporaneous eruptions of cognate volcanoes. Some of them are mixed ashes produced from multiple eruptions and accumulated in reworked sediments. The petrographic and geochemical patterns indicate rhyolitic and dacitic compositions; andesitic glasses are scarce. We infer a magmatic affinity with calc-alkaline sources and a possible origin from the volcanic arc of southwestern Japan. A few samples may originate from the alkaline volcanism of southwestern Japan or the area south of Korea and the Sea of Japan.