69 resultados para Geological - Geotechnical Conditions of Stability
Resumo:
Twenty-four manganese nodules from the surface of the sea floor and fifteen buried nodules were studied. With three exceptions, the nodules were collected from the area covered by Valdivia Cruise VA 04 some 1200 nautical miles southeast of Hawaii. Age determinations were made using the ionium method. In order to get a true reproduction of the activity distribution in the nodules, they were cut in half and placed for one month on nuclear emulsion plates to determine the alpha-activity of the ionium and its daughter products. Special methods of counting the alpha-tracks resolution to depth intervals of 0.125 mm. For the first time it was possible to resolve zones of rapid growth (impulse growth) with growth rates, s > 50 mm/106 yr and interruptions in growth. With few exceptions the average rate of growth of all nodules was surprisingly uniform at 4-9 mm/10 yr. No growth could be recognized radioactively in the buried nodules. One exceptional nodule has had recent impulse growth and, in the material formed, the ionium is not yet in equilibrium with its daughter products. Individual layers in one nodule from the Indian Ocean could be dated and an average time interval of t = 2600±400 yr was necessary to form one layer. The alternation between iron and manganese-rich parts of the nodules was made visible by colour differences resulting from special treatment of cut surfaces with HCl vapour. The zones of slow growth of one nodule are relatively enriched in iron. Earlier attempts to find paleomagnetic reversals in manganese nodules have been continued. Despite considerable improvement in areal resolution, reversals were not detected in the nodules studied. Comparisons of the surface structure, microstructure in section and the radiometric dating show that there are erosion surfaces and growth surfaces on the outer surfaces of the manganese nodules. The formation of cracks in the nodules was studied in particular. The model of age-dependent nodule shrinkage and cracking surprisingly indicates that the nodules break after exceeding a certain age and/or size. Consequently, the breaking apart of manganese nodules is a continuous process not of catastrophic or discontinuous origin. The microstructure of the nodules exhibits differences in the mechanism of accretion and accretion rate of material, shortly referred to as accretion form. Thus non-directional growth inside the nodules as well as a directional growth may be observed. Those nodules with large accretion forms have grown faster than smaller ones. Consequently, parallel layers indicate slow growth. The upper surfaces of the nodules, protruding into the bottom water appear to be more prone to growth disturbances than the lower surfaces, immersed in the sediment. Features of some nodules show, that as they develop, they neither turned nor rolled. Yet unknown is the mechanism that keeps the nodules at the surface during continuous sedimentation. All in all, the nodules remain the objects of their own distinctive problems. The hope of using them as a kind of history book still seems to be very remote.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Lithofacial types of sediments formed in certain geographic and physical-chemical conditions of the Pacific Ocean are distinguished and characterized. It is shown that the regular change of bottom sediment types forming a genetic series from the coast to the pelagic zone clearly demonstrates a leading role of biogenic-terrigenous sedimentation in their formation. In the pelagic zone of the ocean erosion of islands and seamounts, basalt volcanism of anticlinal uplifts, as well as exhalative contribution play some role in addition to the main source of terrigenous and pyroclastic material from continents. These sources do not change, but only complicate terrigenous sedimentation in the studied area of the ocean.
Resumo:
Recent benthic foraminifera and their distribution in surface sediments were studied on a transect through the Peruvian oxygen minimum zone (OMZ) between 10 and 12°S. The OMZ with its steep gradients of oxygen concentrations allows to determine the oxygen-dependent changes of species compositions in a relatively small area. Our results from sediments of thirteen multicorer stations from 79 to 823 m water depth demonstrate that calcareous species, especially bolivinids dominate the assemblages throughout the OMZ. The depth distribution of several species matches distinct ranges of bottom water oxygen levels. The distribution pattern inferred a proxy which allows to estimate dissolved oxygen concentrations for reconstructing oxygen levels in the geological past.
Resumo:
All species of coccolithophore appear to respond to perturbations of carbonate chemistry in a different way. Here, we show that the degree of malformation, growth rate and stable isotopic composition of organic matter and carbonate produced by two contrasting species of coccolithophore (Gephyrocapsa oceanica and Coccolithus pelagicus ssp. braarudii) are indicative of differences between their photosynthetic and calcification response to changing DIC levels (ranging from ~1100 to ~7800 µmol/kg) at constant pH (8.13 ± 0.02). Gephyrocapsa oceanica thrived under all conditions of DIC, showing evidence of increased growth rates at higher DIC, but C. braarudii was detrimentally affected at high DIC showing signs of malformation, and decreased growth rates. The carbon isotopic fractionation into organic matter and the coccoliths suggests that C. braarudii utilises a common internal pool of carbon for calcification and photosynthesis but G. oceanica relies on independent supplies for each process. All coccolithophores appear to utilize bicarbonate as their ultimate source of carbon for calcification resulting in the release of a proton. But, we suggest that this proton can be harnessed to enhance the supply of CO2(aq) for photosynthesis either from a large internal HCO3- pool which acts as a pH buffer (C. braarudii), or pumped externally to aid the diffusive supply of CO2 across the membrane from the abundant HCO3- (G. oceanica), likely mediated by an internal and external carbonic anhydrase respectively. Our simplified hypothetical spectrum of physiologies may provide a context to understand different species response to changing pH and DIC, the species-specific delta p and calcite "vital effects", as well as accounting for geological trends in coccolithophore cell size.
Resumo:
Considerable regional variations in the chemical composition of manganese nodules from a wide range of the Pacific Ocean have been observed. These variations can be more exactly expressed in terms of inter-element relationships. In particular, Cu-Mn and Cu-Ni associations reveal that Cu content in pelagic nodules increases rapidly in proportion to those of Mn or Ni. In nodules from continental borderland and hemipelagic areas, even if Mn or Ni contents increase, that of Cu increases only slightly. It is suggested that the considerable chemical differences within individual nodules and between nodules from the same site, at a limited pelagic area where there is no marked change in depositional conditions of nodules, are due to the role of hydrolyzable trace elements in the formation of nodules.
Resumo:
The upper Tortonian Metochia marls on the island of Gavdos provide an ideal geological archive to trace variations in Aegean sediment supply as well as changes in the North African monsoon system. A fuzzy-cluster analysis on the multiproxy geochemical and rock magnetic dataset of the astronomically tuned sedimentary succession shows a dramatic shift in the dominance of 'Aegean tectonic' clusters to 'North African climate' clusters. The tectonic signature, traced by the starvation of the Cretan sediment, now enables to date the late Tortonian basin foundering on Crete, related to the tectonic break-up of the Aegean landmass, at c. 8.2 Ma. The synchronous decrease in the North African climate proxies is interpreted to indicate a change in the depositional conditions of the sink rather than a climatic change in the African source. This illustrates that interpretations of climate proxies require a multiproxy approach which also assesses possible contributions of regional tectonism.