71 resultados para Friedrich-Schiller-Universität Jena.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focus of this study is the analysis of a local hydrogeological system in the subhumid outer tropics in the western African country of Benin. The aim was to characterize, qualify and quantify the hydrogeological and hydrological properties of the approx. 30 km2 big study area and to develop a conceptual hydrogeological model. This model should provide the basis for further studies on a regional scale. The main goal was to obtain the process knowledge of the hydrogeological system and to determine the process and the quantity of the groundwater recharge in the working area. According to the objectives, a broad hydrogeological approach was chosen. In a spacious network on the local scale TDR probes, suction cups and groundwater observation bores were installed. Also in a multidisciplinary cooperation with hydrology, geography, soil science, biology, meteorology and plant nutrition sciences, instruments like discharge gauging stations, tensiometers, lysimeter, climate stations, runoff plots and erosion pins were installed in the test site for the investigation of the relevant parameters of the hydrological cycle.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substantial retreat or disintegration of numerous ice shelves have been observed on the Antarctic Peninsula. The ice shelf in the Prince Gustav Channel retreated gradually since the late 1980's and broke-up in 1995. Tributary glaciers reacted with speed-up, surface lowering and increased ice discharge, consequently contributing to sea level rise. We present a detailed long-term study (1993-2014) on the dynamic response of Sjögren Inlet glaciers to the disintegration of Prince Gustav Ice Shelf. We analyzed various remote sensing datasets to observe the reactions of the glaciers to the loss of the buttressing ice shelf. A strong increase in ice surface velocities was observed with maximum flow speeds reaching 2.82±0.48 m/d in 2007 and 1.50±0.32 m/d in 2004 at Sjögren and Boydell glaciers respectively. Subsequently, the flow velocities decelerated, however in late 2014, we still measured about two times the values of our first measurements in 1996. The tributary glaciers retreated 61.7±3.1 km² behind the former grounding line of the ice shelf. In regions below 1000 m a.s.l., a mean surface lowering of -68±10 m (-3.1 m/a) was observed in the period 1993-2014. The lowering rate decreased to -2.2 m/a in recent years. Based on the surface lowering rates, geodetic mass balances of the glaciers were derived for different time steps. High mass loss rate of -1.21±0.36 Gt/a was found in the earliest period (1993-2001). Due to the dynamic adjustments of the glaciers to the new boundary conditions the ice mass loss reduced to -0.59±0.11 Gt/a in the period 2012-2014, resulting in an average mass loss rate of -0.89±0.16 Gt/a (1993-2014). Including the retreat of the ice front and grounding line, a total mass change of -38.5±7.7 Gt and a contribution to sea level rise of 0.061±0.013 mm were computed. Analysis of the ice flux revealed that available bedrock elevation estimates at Sjögren Inlet are too shallow and are the major uncertainty in ice flux computations. This temporally dense time series analysis of Sjögren Inlet glaciers shows that the adjustments of tributary glaciers to ice shelf disintegration are still going on and provides detailed information of the changes in glacier dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil degradation threatens agricultural production and food security in Sub-Saharan Africa. In the coming decades, soil degradation, in particular soil erosion, will become worse through the expansion of agriculture into savannah and forest and changes in climate. This study aims to improve the understanding of how land use and climate change affect the hydrological cycle and soil erosion rates at the catchment scale. We used the semi-distributed, time-continuous erosion model SWAT (Soil Water Assessment Tool) to quantify runoff processes and sheet and rill erosion in the Upper Ouémé River catchment (14500 km**2, Central Benin) for the period 1998-2005. We could then evaluate a range of land use and climate change scenarios with the SWAT model for the period 2001-2050 using spatial data from the land use model CLUE-S and the regional climate model REMO. Field investigations were performed to parameterise a soil map, to measure suspended sediment concentrations for model calibration and validation and to characterise erosion forms, degraded agricultural fields and soil conservation practices. Modelling results reveal current "hotspots" of soil erosion in the north-western, eastern and north-eastern parts of the Upper Ouémé catchment. As a consequence of rapid expansion of agricultural areas triggered by high population growth (partially caused by migration) and resulting increases in surface runoff and topsoil erosion, the mean sediment yield in the Upper Ouémé River outlet is expected to increase by 42 to 95% by 2025, depending on the land use scenario. In contrast, changes in climate variables led to decreases in sediment yield of 5 to 14% in 2001-2025 and 17 to 24% in 2026-2050. Combined scenarios showed the dominance of land use change leading to changes in mean sediment yield of -2 to +31% in 2001-2025. Scenario results vary considerably within the catchment. Current "hotspots" of soil erosion will aggravate, and a new "hotspot" will appear in the southern part of the catchment. Although only small parts of the Upper Ouémé catchment belong to the most degraded zones in the country, sustainable soil and plant management practices should be promoted in the entire catchment. The results of this study can support planning of soil conservation activities in Benin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern Antarctic Peninsula is one of the fastest changing regions on Earth. The disintegration of the Larsen-A Ice Shelf in 1995 caused tributary glaciers to adjust by speeding up, surface lowering, and overall increased ice-mass discharge. In this study, we investigate the temporal variation of these changes at the Dinsmoor-Bombardier-Edgeworth glacier system by analyzing dense time series from various spaceborne and airborne Earth observation missions. Precollapse ice shelf conditions and subsequent adjustments through 2014 were covered. Our results show a response of the glacier system some months after the breakup, reaching maximum surface velocities at the glacier front of up to 8.8 m/d in 1999 and a subsequent decrease to ~1.5 m/d in 2014. Using a dense time series of interferometrically derived TanDEM-X digital elevation models and photogrammetric data, an exponential function was fitted for the decrease in surface elevation. Elevation changes in areas below 1000 m a.s.l. amounted to at least 130±15 m130±15 m between 1995 and 2014, with change rates of ~3.15 m/a between 2003 and 2008. Current change rates (2010-2014) are in the range of 1.7 m/a. Mass imbalances were computed with different scenarios of boundary conditions. The most plausible results amount to -40.7±3.9 Gt-40.7±3.9 Gt. The contribution to sea level rise was estimated to be 18.8±1.8 Gt18.8±1.8 Gt, corresponding to a 0.052±0.005 mm0.052±0.005 mm sea level equivalent, for the period 1995-2014. Our analysis and scenario considerations revealed that major uncertainties still exist due to insufficiently accurate ice-thickness information. The second largest uncertainty in the computations was the glacier surface mass balance, which is still poorly known. Our time series analysis facilitates an improved comparison with GRACE data and as input to modeling of glacio-isostatic uplift in this region. The study contributed to a better understanding of how glacier systems adjust to ice shelf disintegration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the "Polarstern"-expeditions ARK-IX/4 (1993) and ARK-XI/1 (1995), organised by the Alfred Wegener Institute (AWI), acoustic subbottom profiles (Parasound) have been collected in the Laptev Sea Shelf, Siberia. These data have been interpreted as an indicator of ice scours frequency and off-shore permafrost patterns. An additional acoustic profile data-base was available by the results of the expedition of the Federal Institute for Geosciences and Natural Resources (BGR) of the year 1994. The area of the expedition was located closer to the shelf, therefore supports a better understanding of ice scours frequency in shallower marine environments. The data-file consists of a 2930 km Parasound-traverse and has been subdivided into 586 working profiles. They are characterised by their location, number of ice scours, interpreted patterns of reflection and their extension and morphology. The data have been evaluated statistically and graphically and were presented in a map. Different patterns of sea floor reflection were established by different environments, outer influences (e.g. size of the icebergs, direction of the drift of icebergs) and the climatic history of the region. In the north-westerly region of the Laptev Sea at the continental slope of Severnaya Zemlya the sea floor in shallower depths has been ploughed intensely by recent icebergs. In some regions (40-60m), as an effect of intensely ploughing, the sea floor is hardly defined in acoustic profiles come along with relocation of marine deposits. Glacial diamiet deposits prevented the development of deep scours. Up to 355m deeper scours result from lower sea levels. The marginal north-easterly region of the Laptev Sea is characterised exclusively by this type of scour. Morphology and depth of these scours can be compared with those of the westerly Vilkitsky-Street so that similar conditions of development may be expected. Both, the north-easterly Laptev Sea and the Vilkitsky-Street, are not dominated by patterns ofrecent icebergs. In contrary the shelf-regions north-easterly ofthe Taimyr peninsula and north-westerly of the New Siberian Islands have been modified evidently by recent icebergs, which drifted with prevalent currents anticlockwise along the shelf edge of the Laptev Sea and cause the deepest scours of the whole region. The off-shore permafrost at the inner shelf regions has an important influence on the scours intensity. The permafrost layer can be recognised by the maximum depth of ice scours. It is represented by a Parasound reflector that can be made up for distances. The age of the ice scours cannot be determined absolutely by Parasound data but a relative order can be estimated whenever two scours are situated close to each other. When the Parasound-traverse ofthe expedition ARK-IX/4 (1993) (77°24'N 133°30'E-77°30'N 133°40'E) was repeated partially in expedition ARK-XI/l (1995) the ice scours of 1993 remained unchanged and uneroded and no new ice scours had been detected. It can be concluded that scours persist for a long time in the Laptev Sea, though after all with an average of 3 ice scours per kilometer there are not many at all in the Laptev Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have generated a new digital elevation model for entire King George Island, Antarctica, using summer TanDEM-X bistatic SAR satellite data. The data was processed using differential SAR interferometry with an older DEM as reference. 4 TanDEM-X scenes from January 2012 were used as input. The new DEM was referenced to and validated against DGPS measurements. Height values are given in reference to ellipsoid (WGS84).