241 resultados para Fresh-water-flow
Resumo:
The mid-Pliocene was an episode of prolonged global warmth and strong North Atlantic thermohaline circulation, interrupted briefly at circa 3.30 Ma by a global cooling event corresponding to marine isotope stage (MIS) M2. Paleoceanographic changes in the eastern North Atlantic have been reconstructed between circa 3.35 and 3.24 Ma at Deep Sea Drilling Project Site 610 and Integrated Ocean Drilling Program Site 1308. Mg/Ca ratios and d18O from Globigerina bulloides are used to reconstruct the temperature and relative salinity of surface waters, and dinoflagellate cyst assemblages are used to assess variability in the North Atlantic Current (NAC). Our sea surface temperature data indicate warm waters at both sites before and after MIS M2 but a cooling of ~2-3°C during MIS M2. A dinoflagellate cyst assemblage overturn marked by a decline in Operculodinium centrocarpum reflects a southward shift or slowdown of the NAC between circa 3.330 and 3.283 Ma, reducing northward heat transport 23-35 ka before the global ice volume maximum of MIS M2. This will have established conditions that ultimately allowed the Greenland ice sheet to expand, leading to the global cooling event at MIS M2. Comparison with an ice-rafted debris record excludes fresh water input via icebergs in the northeast Atlantic as a cause of NAC decline. The mechanism causing the temporary disruption of the NAC may be related to a brief reopening of the Panamanian Gateway at about this time.
Resumo:
A down-core 231Pa/230Th record has been measured from the southwestern Indian Ocean to reconstruct the history of deep water flow into this basin over the last glacial-interglacial cycle. The (231Paxs/230Thxs)0 ratio throughout the record is nearly constant at approximately 0.055, significantly lower than the production ratio of 0.093, indicating that the proxy is sensitive to changes in circulation and/or sediment flux at this site. The consistent value suggests that there has been no change in the inflow of Antarctic Bottom Water to the Indian Ocean during the last 140 ka, in contrast to the changes in deep circulation thought to occur in other ocean basins. The stability of the (231Paxs/230Thxs)0 value in the record contrasts with an existing sortable silt (SS) record from the same core. The observed equation image variability is attributed to a local geostrophic effect amplifying small changes in circulation. A record of authigenic U from the same core suggests that there was reduced oxygen in bottom waters at the core locality during glacial periods. The consistency of the (231Paxs/230Thxs)0 record implies that this could not have arisen by local changes in productivity, thus suggesting a far-field control: either globally reduced bottom water oxygenation or increased productivity south of the Opal Belt during glacials.
Resumo:
Lake George, New York, is the site of a new discovery of iron-manganese nodules. These nodules occur at a water depth between 21 and 36 m along a stretch of lake extending for about 5 mi north and south of the Narrows, a constricted island-dotted area which separates the north and south Lake George basins. Nodules occur on or within the uppermost 5 cm of a varved glacial clay. Some areas are solidly floored with a carpet of nodules in areas where active currents keep the nodules exposed. The nodules form around nuclei which consist of clay and less commonly of spore capsules, detrital particles, or bark. By their shape we recognize three types of nodules: spherical, discoidal, and lumps. On X-ray examination all nodules show small goethite peaks; in one nodule the manganese mineral birnessite was identified. Manganese and part of the iron appears to be in X-ray amorphous ferromanganese compounds. The Lake George nodules are enriched in iron with respect to marine nodules but are lower in manganese. They have a higher trace element concentration than nodules from other known freshwater lake occurrences, but a lower concentration than marine nodules.
Resumo:
Chemical and X-ray analyses were performed on the fifteen manganese nodules collected from the Pacific Ocean floor. The results were discussed compared with the previous data on the manganese nodules. Minerals were found to be todorokite, delta-MnO2 and other silicates, montmorillonite, illite, phillipsite and alpha-Si02. Average composition shows that copper is concentrated on the deep sea nodules more than the shallow ones, and that the todorokite rich nodules contain more copper and nickel than the delta-MnO2 rich ones. The analyses of fresh water iron-manganese precipitates by bacterial activity suggest that biological process is one of the important factors on the genesis of the sedimentary iron-manganese deposits, in¬cluding the manganese nodule.
Resumo:
Connectivity between the terrestrial and marine environment in the Artic is changing as a result of climate change, influencing both freshwater budgets and the supply of carbon to the sea. This study characterizes the optical properties of dissolved organic matter (DOM) within the Lena Delta region and evaluates the behavior of DOM across the fresh water-marine gradient. Six fluorescent components (four humic-like; one marine humic-like; one protein-like) were identified by Parallel Factor Analysis (PARAFAC) with a clear dominance of allochthonous humic-like signals. Colored DOM (CDOM) and dissolved organic carbon (DOC) were highly correlated and had their distribution coupled with hydrographical conditions. Higher DOM concentration and degree of humification were associated with the low salinity waters of the Lena River. Values decreased towards the higher salinity Laptev Sea shelf waters. Results demonstrate different responses of DOM mixing in relation to the vertical structure of the water column, as reflecting the hydrographical dynamics in the region. Two mixing curves for DOM were apparent. In surface waters above the pycnocline there was a sharper decrease in DOM concentration in relation to salinity indicating removal. In the bottom water layer the DOM decrease within salinity was less. We propose there is a removal of DOM occurring primarily at the surface layer, which is likely driven by photodegradation and flocculation.
Resumo:
Janczyk-Kopikowa (1966): The series of the organic deposits, developed in the vicinity of Golkow near Warsaw as oil shales and peats, was laid down in a grough valley and now rests on the deposits of the Middle Polish Glaciation (Riss). The organic deposits are overlain by the fluviale deposits of the North Polish Glaciation (Würm). The locality Golkow occurs beyond the extent of the continental glacier of this glaciation. Polen analysis completed by microfloristic examinations allows to determine the age of the organic series that is thought to be Eemian. The pollen diagram from Golkow does not call in question the stratigraphical position of the deposits investigated mainly due to its characteristic features such as minimum content of coniferous trees in the climatic optimum - about 5%, high percentage of Corylus - 77.5% and well developed phase of hornbeam. It may be well compared with other Eemian diagrams from the area of Poland and reveals much similar features. The development of vegetation at Golkow has depended upon the prevailing climate. At first, the cool climate brings about the development of plants having small thermal requirements. Here belong thin, park-like forests with pine and birch (Pinus, Betula) accompanied by the heliophilic plants such as Hippohäe and Ephedra. Improvement of climate that becomes warm and humid provides for development of deciduous forests prevailing in the climatic optimum, of the interglacial. Decrease of temperature causes a repeated change in the type of forest. This latter changes into coniferous forest with prevailing spruce (Picea) and fir (Abies) at the beginning, and then with pine (Pinus) and birch (Betula). During the Eemian Interglacial, the development of plants at Golkow terminates with a new and long-lasting predominance of pine-birch forests. However, such a longevity may be apparent only. Apparent character of this phenomenon is proved by a fact that the pollen spectra of the warm climatic periods have found their reflex in the oil shale that increased considerably slower than the layers off feebly decomposed peat evidencing the existence of cool pine-birch forests from the decline of the Interglacial. The water basin, in which the polen grains were laid down from surrounding plants is characterized by a calm sedimentation as proved by the occurrence of the oil shale. An insignificant water flow left behind some thin sand laminae. The not too deep basin becomes shallower owing to the growing water vegetation, and marshy vegetation. The growing of the plants causes a complete shallowing of the basin and formation of peat bog in situ, as proved by the peat beds occurring in the section. ---- Gadomska (1966): In the vicinity of Golków a series of organic deposits occurs amounting to 6.5-9.3 m in thickness, and consisting of oil shales, lacustrine silts and sands, as well as peats and peaty silts. The organic deposits fill up an old, small, but fairly deep lake basin, probably of finger-lake origin. It may be seen to-day as a slight lowering of the relief, filled up with soaked ground, stretching from north to south. On the basis of palaeobotanical examinations the organic deposits considered are of Eemian Interglacial age (Z. Janczyk-Kopikowa, 1063). The lower part of the organic series consists of a compact oil shale horizon, the maximum thickness of which may attain up to 8 m. The oil shales contain particularly in their upper part, numerous intercalations of arenaceous silts, dark grey or black in colour, or of sands mainly of lacustrine provenance. At the top of the oil shales are found peats, up to 2.5 m in thickness, covered by black, humus silts with numerous plant remains. The Eemian Interglacial deposits are covered by a series of fluviatile sands belonging partly to the Baltic Glaciation (bottom part of the series), partly to the Holocene (top part of the series). The thickness of the sands is 0.5-3.7 m. Higher up, there are found the Holocene and present-day deposits developed as clayey alluvion, or arenaceous slide rocks, or arenaceous-silty soil.
Resumo:
Time variable gravity fields, reflecting variations of mass distribution in the system Earth is one of the key parameters to understand the changing Earth. Mass variations are caused either by redistribution of mass in, on or above the Earth's surface or by geophysical processes in the Earth's interior. The first set of observations of monthly variations of the Earth gravity field was provided by the US/German GRACE satellite mission beginning in 2002. This mission is still providing valuable information to the science community. However, as GRACE has outlived its expected lifetime, the geoscience community is currently seeking successor missions in order to maintain the long time series of climate change that was begun by GRACE. Several studies on science requirements and technical feasibility have been conducted in the recent years. These studies required a realistic model of the time variable gravity field in order to perform simulation studies on sensitivity of satellites and their instrumentation. This was the primary reason for the European Space Agency (ESA) to initiate a study on ''Monitoring and Modelling individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites''. The goal of this interdisciplinary study was to create as realistic as possible simulated time variable gravity fields based on coupled geophysical models, which could be used in the simulation processes in a controlled environment. For this purpose global atmosphere, ocean, continental hydrology and ice models were used. The coupling was performed by using consistent forcing throughout the models and by including water flow between the different domains of the Earth system. In addition gravity field changes due to solid Earth processes like continuous glacial isostatic adjustment (GIA) and a sudden earthquake with co-seismic and post-seismic signals were modelled. All individual model results were combined and converted to gravity field spherical harmonic series, which is the quantity commonly used to describe the Earth's global gravity field. The result of this study is a twelve-year time-series of 6-hourly time variable gravity field spherical harmonics up to degree and order 180 corresponding to a global spatial resolution of 1 degree in latitude and longitude. In this paper, we outline the input data sets and the process of combining these data sets into a coherent model of temporal gravity field changes. The resulting time series was used in some follow-on studies and is available to anybody interested.
Resumo:
We investigated surficial sediments for physico-chemical composition from numerous sites of seven study areas in the manganese nodule field of the northern Peru Basin as part of a deep-sea environmental study. Major results from this study are strong variability with respect to water depth, productivity in surface waters, locality, bottom water flow, and seafloor topography. Sediment sites are located mostly in 3900 to 4300 m water depth between the lysocline and the carbonate compensation depth (CCD). Large fluctuations in carbonate content (0% to 80%) determine sediment density and compressional-wave velocity, and, by dilution, contents of opal and non-biogenic material. Mass accumulation rates of biogenic components as well as geochemical proxies (barium and phosphorus) distinguish areas of higher productivity in the northwest near equatorial upwelling and in the northeast close to coastal upwelling, from areas of lower productivity in the west and south. Comparisons between the central Peru Basin area (Discol) and western Peru Basin area (Sediperu) reveals, for the Sediperu area, a shallower CCD, more carbonate but less opal, organic carbon, and non-biogenic material in sediments at the same water depth as well as larger down-core fluctuations of organic carbon and MnO2. Bottom water flow in the abyssal hill topography causes winnowing of material from summits of seamounts and ridges, where organic carbon preservation is poor, to basins where organic carbon preservation is better. Down-core measurements in box cores indicate a three-fold division in the upper 50 cm of the sediment column. An uppermost semi-liquid top layer is dark brown, 5-15 cm thick and contains most of the ferro-manganese nodules. A 5-15 cm thick transition zone of light sediment color has increasing shear strength, lowest opal contents and compressional-wave velocities, but highest carbonate contents and sediment densities. The lowermost layer contains stiffer light gray sediments.