191 resultados para Forsterite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peridotite samples recovered from IODP Site U1309 at the Atlantis Massif in the Mid-Atlantic Ridge were examined to understand magmatic processes for the oceanic core complex formation. Original peridotite was fragmented, and the limited short peridotite intervals are now surrounded by a huge gabbro body probably formed by late-stage melt injections. Each peridotite interval has various petrographical and geochemical features. A spinel harzburgite in contact with gabbro shows evidence of limited melt penetrations causing gradual compositional change, in terms of trace-element compositions of pyroxenes, as well as modal change near the boundary. Geochemistry of clinopyroxenes with least melt effects indicates that the harzburgite is originally mantle residue formed by partial melting under polybaric conditions, and that such a depleted peridotite is one of the components of the oceanic core complex. Some of plagioclase-bearing peridotites, on the other hand, have more complicated origin. Although their original features were partly overprinted by the injected melt, the original peridotites, both residual and non-residual materials, were possibly derived from the upper mantle. This suggests that the melt injected around an upper mantle region or into mantle material fragments. The injected melt was possibly generated at the ridge-segment center and, then, moved and evolved toward the segment end beneath the oceanic core complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compositions, mineralogies, and textures of gabbros recovered in polymict breccias in Hole 453 indicate that they are the cumulus assemblages of calc-alkalic crystal fractional on that occurred beneath the West Mariana Ridge. They are among a class of gabbros known only from other calc-alkalic associations (e.g., the Lesser Antilles and the Peninsular Ranges batholith of Southern California) and differ from gabbros of stratiform complexes, ophiolites, and the ocean crust. Particularly abundant in the Hole 453 breccias are olivine-bearing gabbros with extremely calcic Plagioclase (An94-97) but with fairly iron-rich olivines (Fo76-77). Other gabbros contain biotite and amphibole and occur in breccias with fairly high-grade greenschist facies (amphibole-chlorite-stilpnomelane) metabasalts. One unusual gabbro has experienced almost complete subsolidus recrystallization to an assemblage of aluminous magnesio-hornblende, anorthite, and green hercynitic spinel. This reaction, the extremely calcic Plagioclase, the occurrence of biotite and amphibole, and the association with greenschist facies metamorphic rocks suggest that crystallization of the gabbros occurred at elevated P(H2O). Comparisons with other calc-alkalic gabbro suites suggest pressures in excess of 4 kbar (about 12 km depth). The gabbros were exposed by the early stages of opening of the Mariana Trough and imply that considerable uplift may have attended rifting. They were also subjected to hydrothermal alteration after breccia formation, resulting in formation of chlorite, epidote, actinolite, and prehnite. Temperatures of at least 200°C - and probably 350°C - were reached, and most likely could not have been attained without extrusion or intrusion of magmas nearby, even though no such rocks were cored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicic Fe-Ti-oxide magmatic series was the first recognized in the Sierra Leone axial segment of the Mid-Atlantic Ridge near 6°N. The series consists of intrusive rocks (harzburgites, lherzolites, bronzitites, norites, gabbronorites, hornblende Fe-Ti-oxide gabbronorites and gabbronorite-diorites, quartz diorites, and trondhjemites) and their subvolcanic (ilmenite-hornblende dolerites) and, possibly, volcanic analogues (ilmenite-bearing basalts). Deficit of most incompatible elements in the rocks of the series suggests that parental melts derived from a source that had already been melted. Correspondingly, these melts could not be MORB derivatives. Origin of the series is thought to be related to melting of the hydrated oceanic lithosphere during emplacement of an asthenospheric plume (protuberance on the surface of large asthenospheric lens beneath MAR). Genesis of different melts was supposedly controlled by ascent of a chamber of hot mantle magmas thought this lithosphere in compliance with the zone melting mechanism. Melt acquired fluid components from heated rocks at peripheries of the plume and became enriched in Fe, Ti, Pb, Cu, Zn, and other components mobile in fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cr-spinels in cores drilled during Ocean Drilling Program Leg 135 exhibit wide variations in composition and morphology that reflect complex petrogenetic histories. These Cr-spinels are found within basaltic lava flows that erupted in north-trending sub-basins within the Lau Basin backarc. Cr-spinels from Sites 834 and 836 occur as euhedral groundmass grains and inclusions in plagioclase, and range up to 300 ?m in size. These Cr-spinels are similar in composition, morphology, and mode of occurrence to Cr-spinels found within depleted, N-type mid-ocean-ridge basalts (N-MORB), reflecting similar crystallization conditions and host lava composition to N-MORB. Their compositional range is relatively narrow, with Cr/(Cr + Al + Fe3+) (Cr#) and Mg/(Mg + Fe2+) (Mg#) varying from 0.38 to 0.48 and 0.56 to 0.72, respectively; like Cr-spinels from N-MORB, they contain low amounts of TiO2 (0.37%-1.05%) and Fe3+/(Cr + Al + Fe3+) (Fe3+#; <0.11). In contrast, Cr-spinels from Site 839 have much higher Cr# at a given Mg#, with Cr# varying from 0.52 to 0.76 and Mg# varying from 0.27 to 0.75. These Cr-spinels are similar in composition to those from primitive, boninitic or low-Al2O3 arc basalts, sharing their low TiO2 and Fe3+# (typically below 0.35% and 0.1, respectively for spinel grain interiors). Site 839 Cr-spinels occur as small (to 50 µm) euhedra within strongly zoned olivine or as unusually large (to 3 mm), euhedral to subhedral megacrysts. These megacrysts are strongly zoned in Mg#, but they display little zoning in Cr#, providing evidence of strong compositional disequilibria with the host melt. The magnesian cores of the megacrysts crystallized from primitive, near-primary melts derived from harzburgitic or highly depleted lherzolitic sources, and they provide evidence that the Site 839 spinel-bearing lavas were derived by the mixing of melt with a Mg# of 0.75-0.80 and evolved, Cr-spinel barren melt with a Mg# < 0.6 shortly before eruption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microprobe mineral compositions of olivine, plagioclase, clinopyroxene, chrome spinel, ilmenite, and titanomagnetite are presented for 7 samples from 4 flows of hawaiite and one flow of tholeiitic basalt from Hole 430A at Ojin Seamount, 4 samples from 3 flows of alkalic basalt from Hole 432A at Nintoku Seamount, and 29 samples from 2 flows of alkalic basalt and 24 flows of tholeiitic basalt from Holes 433A, 433B, and 433C at Suiko Seamount. The four hawaiite flows from Hole 430A on Ojin Seamount have nearly identical mineralogy. The plagioclase phenocrysts and calculated equilibrium olivine appear to have crystallized at about 1175°C; the groundmass plagioclase crystallized from about 1135° to 1010°C; and the Fe-Ti oxides equilibrated at temperatures from 1000°C to 720°C under oxygen fugacities of 10**-11 to 10**-17. The single tholeiitic flow contains glomerocrysts of plagioclase (An80 to An65) and clinopyroxene (Wo43En46Fsn to Wo42En45Fs13). The plagioclase phenocrysts give calculated temperatures as high as 1400°C, indicating that they were not equilibrated with a magma having the bulk rock composition. The plagioclase groundmass crystallized at 1120° to 1070°C, and the Fe-Ti oxides equilibrated at 1070° to 930°C under oxygen fugacities of 10**-10 to 10**-12. Using mineral compositions of Hawaiian basalts as a guide, we infer that the hawaiite flows were erupted during the post-caldera alkalic eruptive stage and the tholeiite was erupted during the shield-building or caldera collapse stage. The three alkalic basalt flows from Hole 432A on Nintoku Seamount have similar mineralogy, although Flow Units 1 and 2 contain much more abundant plagioclase phenocrysts. The groundmass plagioclase crystallized at temperatures between 1175° and 1000°C. The olivine and plagioclase phenocrysts do not appear to be in equilibrium with the enclosing magmas. The mineral compositions suggest that these samples are intermediate between alkalic basalt and hawaiite; they probably erupted during the post-caldera alkalic stage of eruption. The two analyzed alkalic basalt flows are the two youngest flows recovered at Holes 433A, 433B, and 433C. Flow Unit 1 contains abundant sector-zoned clinopyroxene, and Flow Unit 2 contains rare kink-banded olivine xenocrysts. The plagioclase phenocrysts yield calculated temperatures of 1440° to 1250°C, indicating that they are probably not cognate. Calculated-equilibrium olivine indicates crystallization of olivine at about 1170°C. The Fe-Ti oxides equilibrated at temperatures of 1140° to 870°C under oxygen fugacities of 10**-9 to 10**-14. The groundmass plagioclase crystallized at temperatures of 1178° to 1035 °C. The mineral compositions indicate that these alkalic basalts erupted during the post-caldera alkalic eruptive stage. The 24 analyzed tholeiitic basalts are subdivided on the basis of phenocryst abundances into olivine tholeiites, plagioclase tholeiites, and tholeiites. The crystallization sequence appears to have been chrome spinel, olivine, plagioclase, and clinopyroxene as phenocryst phases, followed by and overlapping with groundmass crystallization of plagioclase (1180° to 920°C), clinopyroxene, and Fe-Ti oxides (1140° to 670°C). At least three flows contain pigeonite. The mineral compositions indicate that all the samples from Flow Unit 4 downward are tholeiitic basalts, although Flow Unit 64 has mineral compositions transitional to those in alkalic basalts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Leg 81 basalts, drilled either from the margins ("dipping reflectors" sequence: Holes 552, 553A, and 554A) or from the "continental" side (Hole 555) of the Rockall Plateau microcontinent, are strongly light rare-earth element (LREE) depleted oceanic tholeiites. The basalts from the four holes are almost similar. Most of their primary characteristics have been preserved, although they have suffered alteration by seawater. From the petrological and mineralogical points of view, they resemble deep-ocean-floor basalts but show some peculiarities (occurrence of pigeonite and ilmenite as normal components of the groundmass differentiation sequences toward ferrobasalts). Their geochemical characteristics are dominated by their extreme depletion in the most hygromagmaphile elements (Th, Ta, La, and Nb), the concentrations of which are sometimes lower than the corresponding chondritic values. Leg 81 basalts are thus clearly different from continental tholeiites (flood basalts): Possible equivalents in the Thulean Tertiary Magmatic Province include the LREE-depleted tholeiites from the Upper Basaltic Series of the Faeroe Islands and the Preshal Mhor basalt type from the British Tertiary Province.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the GEISHA expedition (Geologische Expedition in die Shackleton Range 1987/88), the Pioneers Escarpment was visited and sampled extensively for the first time. Most of the rock types encountered represent amphibolite facies metamorphics, but evidence for granulite facies conditions was found in cores of garnet. These conditions must have been at least partly reached during the peak of metamorphism. For the Pioneers Escarpment a varicolored succession of sedimentary and bimodal volcanic origin is typical. It comprises: quartzites muscovite quartzite, sericite quartzite, fuchsite quartzite, garnet-quartz schists etc.; pelites: mica schists and plagioclase or plagioclase-microcline gneisses, aluminous schists; marls and carbonates: grey meta-limestones, carbonaceous quartzites, but also pure white, often fine-grained, saccharoidal marble, or a variety of tremolite marble, olivine (forsterite) marble, diopside-clinopyroxene-tremolite marble, etc.; basic volcanic rocks: amphibole fels, amphibolite schist, garnet amphibolite, and acidic to intermediate volcanic rocks: garnet-biotite schist, epidote-biotite-plagioclase gneiss, microcline gneiss. These rocks are considered to be a supracrustal unit, called the Pioneers Group. In the easternmost parts of the Pioneers Escarpment, e.g. at Vindberget, nonmetamorphic shales, sandstones and greywackes crop out, which are cover rocks of possibly Jurassic age. These metasediments, which represent a quartz-pelite-carbonate (QPC) association, indicate that deposition took place on a stable shelf, i.e. on the submerged rim of a craton. Marine shallow-water sedimentation including marls and aluminous clays form the protoliths. The volcanics may be part of a bimodal volcanics-arkose-conglomerate (BVAC) association. Geochemical analyses support the assumption of volcanic protoliths. This is demonstrated especially by the elevated amounts of the immobile, incompatible high-field-strength elements (HFSE) Nb, Ta, Ti, Y, and Zr encountered in some of the gneisses. Microscopic investigation suggests the existence of ortho-amphibolites. This is confirmed by the geochemistry. A bimodal volcanic association is evident. The amphibolites plot in both the tholeiite and calc-alkaline fields. The acidic volcanics are mainly rhyolitic. The sediments and volcanics were subjected to conditions of 10-11 kbar and 600°C during the peak of metamorphism, i.e. granulite facies metamorphism, which can be deduced from the Fe mole ratios of 0.71-0.73 in the garnet cores. Due to the relatively low temperatures, no anatectic melting took placc. The rims of the garnets show a Fe mole ratio of 0.84-0.86, and the coexisting mineral association garnet-biotite-staurolite-kyanite indicate amphibolite facies. The thermobarometry shows P-T conditions of 5-6 kbar and 570-580°C for this stage. The metamorphic history indicates deep burial at depths down to 35 km (subduction?) i.e. high pressure metamorphism, followed by pressure release due to uplift associated with retrograde metamorphism. This may have happened during a pre-Ross metamorphic event or orogeny. The Ross Orogeny at about 500 Ma probably just led to the weak greenschist facies overprint that is evident in the rocks of the Pioneers Group. Finally, sedimentation resumed in the area of the present Shackleton Range, or at least in the eastern part of the Pioneers Escarpment, probably when detritus from erosion of the basement (Read Group and Pioneers Group) was deposited, forming sandstones and greywackes of possibly Jurassic age. There is no indication that these sediments belong to the former Turnpike Bluff Group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary and secondary mineral phases from Holes 1268A (11 samples), 1272A (9 samples), and 1274A (12 samples) were analyzed by electron microprobe in Bonn and Cologne (Germany). Bulk rock powders of these samples were also analyzed geochemically, including major and trace elements (Paulick et al., 2006, doi:10.1016/j.chemgeo.2006.04.011). Ocean Drilling Program (ODP) Leg 209 Holes 1268A, 1272A, and 1274A differ remarkably in alteration intensity and mineralogy, and details regarding their lithologic characteristics are presented in Bach et al. (2004, doi:10.1029/2004GC000744) and Shipboard Scientific Party (2004, doi:10.2973/odp.proc.ir.209.101.2004). Because of the least altered character of peridotite in Hole 1274A, abundant clinopyroxene, orthopyroxene, olivine, and spinel were analyzed at this site. In Hole 1272A, primary silicates are rare and analyses were restricted to some samples that contain traces of olivine and orthopyroxene. Because of the intensity of alteration, Hole 1268A is devoid of primary phases except spinel. Commonly, alteration is pseudomorphic and serpentinization of olivine and orthopyroxene can be distinguished. Accordingly, compositional variations of the alteration minerals with regard to the precursor minerals are one of the issues investigated in this data report.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Major oxide and trace element determinations of the composition basalts from the bottom of Hole 487, together with microprobe analyses of their minerals (olivine, magnesiochromite, salite, and plagioclase), prove that they are depleted oceanic tholeiites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The powerful eruption in the Akademii Nauk caldera on January 2, 1996 marked a new activity phase of the Karymsky volcano and became a noticeable event in the history of modern volcanism in Kamchatka. The paper reports data obtained by studying more than 200 glassy melt inclusions in phenocrysts of olivine (Fo82-72), plagioclase (An92-73), and clinopyroxene (Mg# 83-70) in basalts of the 1996 eruption. The data were used to estimate composition of the parental melt and physicochemical parameters of the magma evolution. According to our data, the parental melt corresponded to low magnesium, high aluminum basalt (SiO2 = 50.2%, MgO = 5.6%, Al2O3 = 17%) of the mildly potassium type (K2O = 0.56%) and contained much dissolved volatile components (H2O = 2.8%, S = 0.17%, and Cl = 0.11%). Melt inclusions in the minerals are similar in chemical composition, a fact testifying that the minerals crystallized simultaneously with one another. Their crystallization started at pressure ~1.5 kbar, proceeded within a narrow temperature range of 1040+/-20°C, and continued until near-surface pressure ~100 bar was reached. Degree of crystallization of the parental melt during its eruption was close to 55%. Massive crystallization was triggered by H2O degassing under pressure <1 kbar. Magma degassing in an open system resulted in escape of 82% H2O, 93% S, and 24% Cl (of their initial contents in the parental melt) to the fluid phase. Release of volatile compounds to the atmosphere during the eruption that lasted for 18 h was estimated as 1.7x10**6 t H2O, 1.4x10**5 t S, and 1.5x10**4 t Cl. Concentrations of most incompatible trace elements in the melt inclusions are close to those in the rocks and to the expected fractional differentiation trend. Melt inclusions in plagioclase were found to be selectively enriched in Li. The Li-enriched plagioclase with melt inclusions thought to originate from cumulate layers in the feeding system beneath Karymsky volcano, in which plagioclase interacted with Li-rich melts/brines and was subsequently entrapped and entrained by the magma during the 1996 eruption.