68 resultados para Field Experiments
Resumo:
Acidification of seawater owing to oceanic uptake of atmospheric CO2 originating from human activities such as burning of fossil fuels and land-use changes has raised serious concerns regarding its adverse effects on corals and calcifying communities. Here we demonstrate a net loss of calcium carbonate (CaCO3) material as a result of decreased calcification and increased carbonate dissolution from replicated subtropical coral reef communities (n=3) incubated in continuous-flow mesocosms subject to future seawater conditions. The calcifying community was dominated by the coral Montipora capitata. Daily average community calcification or Net Ecosystem Calcification (NEC=CaCO3 production - dissolution) was positive at 3.3 mmol CaCO3 m-2 h-1 under ambient seawater pCO2 conditions as opposed to negative at -0.04 mmol CaCO3 m-2 h-1 under seawater conditions of double the ambient pCO2. These experimental results provide support for the conclusion that some net calcifying communities could become subject to net dissolution in response to anthropogenic ocean acidification within this century. Nevertheless, individual corals remained healthy, actively calcified (albeit slower than at present rates), and deposited significant amounts of CaCO3 under the prevailing experimental seawater conditions of elevated pCO2.
Resumo:
CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of >230 Pa (>2300 µatm) and pHNBS values of <7.5 are encountered during summer and autumn, average pCO2 values are ~70 Pa (~700 µatm). In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 µatm, pHNBS = 7.7). Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 µatm) prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values >400 Pa (>4000 µatm). These changes will most likely affect calcification and recruitment, and increase external shell dissolution.
Resumo:
It has been proposed that increasing levels of pCO2 in the surface ocean will lead to more partitioning of the organic carbon fixed by marine primary production into the dissolved rather than the particulate fraction. This process may result in enhanced accumulation of dissolved organic carbon (DOC) in the surface ocean and/or concurrent accumulation of transparent exopolymer particles (TEPs), with important implications for the functioning of the marine carbon cycle. We investigated this in shipboard bioassay experiments that considered the effect of four different pCO2 scenarios (ambient, 550, 750 and 1000 µatm) on unamended natural phytoplankton communities from a range of locations in the northwest European shelf seas. The environmental settings, in terms of nutrient availability, phytoplankton community structure and growth conditions, varied considerably between locations. We did not observe any strong or consistent effect of pCO2 on DOC production. There was a significant but highly variable effect of pCO2 on the production of TEPs. In three of the five experiments, variation of TEP production between pCO2 treatments was caused by the effect of pCO2 on phytoplankton growth rather than a direct effect on TEP production. In one of the five experiments, there was evidence of enhanced TEP production at high pCO2 (twice as much production over the 96 h incubation period in the 750 ?atm treatment compared with the ambient treatment) independent of indirect effects, as hypothesised by previous studies. Our results suggest that the environmental setting of experiments (community structure, nutrient availability and occurrence of phytoplankton growth) is a key factor determining the TEP response to pCO2 perturbations.
Resumo:
There are serious concerns that ocean acidification will combine with the effects of global warming to cause major shifts in marine ecosystems, but there is a lack of field data on the combined ecological effects of these changes due to the difficulty of creating large-scale, long-term exposures to elevated CO2 and temperature. Here we report the first coastal transplant experiment designed to investigate the effects of naturally acidified seawater on the rates of net calcification and dissolution of the branched calcitic bryozoan Myriapora truncata (Pallas, 1766). Colonies were transplanted to normal (pH 8.1), high (mean pH 7.66, minimum value 7.33) and extremely high CO2 conditions (mean pH 7.43, minimum value 6.83) at gas vents off Ischia Island (Tyrrhenian Sea, Italy). The net calcification rates of live colonies and the dissolution rates of dead colonies were estimated by weighing after 45 days (May-June 2008) and after 128 days (July-October) to examine the hypothesis that high CO2 levels affect bryozoan growth and survival differently during moderate and warm water conditions. In the first observation period, seawater temperatures ranged from 19 to 24 °C; dead M. truncata colonies dissolved at high CO2 levels (pH 7.66), whereas live specimens maintained the same net calcification rate as those growing at normal pH. In extremely high CO2 conditions (mean pH 7.43), the live bryozoans calcified significantly less than those at normal pH. Therefore, established colonies of M. truncata seem well able to withstand the levels of ocean acidification predicted in the next 200 years, possibly because the soft tissues protect the skeleton from an external decrease in pH. However, during the second period of observation a prolonged period of high seawater temperatures (25-28 °C) halted calcification both in controls and at high CO2, and all transplants died when high temperatures were combined with extremely high CO2 levels. Clearly, attempts to predict the future response of organisms to ocean acidification need to consider the effects of concurrent changes such as the Mediterranean trend for increased summer temperatures in surface waters. Although M. truncata was resilient to short-term exposure to high levels of ocean acidification at normal temperatures, our field transplants showed that its ability to calcify at higher temperatures was compromised, adding it to the growing list of species now potentially threatened by global warming.
Resumo:
An investigation was conducted to determine the effects of elevated pCO2 on the net production and calcification of an assemblage of corals maintained under near-natural conditions of temperature, light, nutrient, and flow. Experiments were performed in summer and winter to explore possible interactions between seasonal change in temperature and irradiance and the effect of elevated pCO2. Particular attention was paid to interactions between net production and calcification because these two processes are thought to compete for the same internal supply of dissolved inorganic carbon (DIC). A nutrient enrichment experiment was performed because it has been shown to induce a competitive interaction between photosynthesis and calcification that may serve as an analog to the effect of elevated pCO2. Net carbon production, NPC, increased with increased pCO2 at the rate of 3 ± 2% (?mol CO2aq kg?1)?1. Seasonal change of the slope NPC-[CO2aq] relationship was not significant. Calcification (G) was strongly related to the aragonite saturation state ? a . Seasonal change of the G-? a relationship was not significant. The first-order saturation state model gave a good fit to the pooled summer and winter data: G = (8 ± 1 mmol CaCO3 m?2 h?1)(? a ? 1), r 2 = 0.87, P = 0.0001. Both nutrient and CO2 enrichment resulted in an increase in NPC and a decrease in G, giving support to the hypothesis that the cellular mechanism underlying the decrease in calcification in response to increased pCO2 could be competition between photosynthesis and calcification for a limited supply of DIC.
Resumo:
A long-term (10 months) controlled experiment was conducted to test the impact of increased partial pressure of carbon dioxide (pCO2) on common calcifying coral reef organisms. The experiment was conducted in replicate continuous flow coral reef mesocosms flushed with unfiltered sea water from Kaneohe Bay, Oahu, Hawaii. Mesocosms were located in full sunlight and experienced diurnal and seasonal fluctuations in temperature and sea water chemistry characteristic of the adjacent reef flat. Treatment mesocosms were manipulated to simulate an increase in pCO2 to levels expected in this century [midday pCO2 levels exceeding control mesocosms by 365 ± 130 µatm (mean ± sd)]. Acidification had a profound impact on the development and growth of crustose coralline algae (CCA) populations. During the experiment, CCA developed 25% cover in the control mesocosms and only 4% in the acidified mesocosms, representing an 86% relative reduction. Free-living associations of CCA known as rhodoliths living in the control mesocosms grew at a rate of 0.6 g buoyant weight per year while those in the acidified experimental treatment decreased in weight at a rate of 0.9 g buoyant weight per year, representing a 250% difference. CCA play an important role in the growth and stabilization of carbonate reefs, so future changes of this magnitude could greatly impact coral reefs throughout the world. Coral calcification decreased between 15% and 20% under acidified conditions. Linear extension decreased by 14% under acidified conditions in one experiment. Larvae of the coral Pocillopora damicornis were able to recruit under the acidified conditions. In addition, there was no significant difference in production of gametes by the coral Montipora capitata after 6 months of exposure to the treatments.
Egg and early larval stages of Baltic cod, Gadus morhua duirng ocean acidification experiments, 2012
Resumo:
The accumulation of carbon dioxide in the atmosphere will lower the pH in ocean waters, a process termed ocean acidification (OA). Despite its potentially detrimental effects on calcifying organisms, experimental studies on the possible impacts on fish remain scarce. While adults will most likely remain relatively unaffected by changes in seawater pH, early life-history stages are potentially more sensitive, due to the lack of gills with specialized ion-regulatory mechanisms. We tested the effects of OA on growth and development of embryos and larvae of eastern Baltic cod, the commercially most important fish stock in the Baltic Sea. Cod were reared from newly fertilized eggs to early non-feeding larvae in 5 different experiments looking at a range of response variables to OA, as well as the combined effect of CO2 and temperature. No effect on hatching, survival, development, and otolith size was found at any stage in the development of Baltic cod. Field data show that in the Bornholm Basin, the main spawning site of eastern Baltic cod, in situ levels of pCO2are already at levels of 1,100 µatm with a pH of 7.2, mainly due to high eutrophication supporting microbial activity and permanent stratification with little water exchange. Our data show that the eggs and early larval stages of Baltic cod seem to be robust to even high levels of OA (3,200 µatm), indicating an adaptational response to CO2.