159 resultados para Event-based timing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantifying the spatial and temporal sea surface temperature (SST) and salinity changes of the Indo-Pacific Warm Pool is essential to understand the role of this region in connection with abrupt climate changes particularly during the last deglaciation. In this study we reconstruct SST and seawater d18O of the tropical eastern Indian Ocean for the past 40,000 years from two sediment cores (GeoB 10029-4, 1°30'S, 100°08'E, and GeoB 10038-4, 5°56'S, 103°15'E) retrieved offshore Sumatra. Our results show that annual mean SSTs increased about 2-3 °C at 19,000 years ago and exhibited southern hemisphere-like timing and pattern during the last deglaciation. Our SST records together with other Mg/Ca-based SST reconstructions around Indonesia do not track the monsoon variation since the last glacial period, as recorded by terrestrial monsoon archives. However, the spatial SST heterogeneity might be a result of changing monsoon intensity that shifts either the annual mean SSTs or the seasonality of G. ruber towards the warmer or the cooler season at different locations. Seawater d18O reconstructions north of the equator suggest fresher surface conditions during the last glacial and track the northern high-latitude climate change during the last deglaciation. In contrast, seawater ?18O records south of the equator do not show a significant difference between the last glacial period and the Holocene, and lack Bølling-Allerød and Younger Dryas periods suggestive of additional controls on annual mean surface hydrology in this part of the Indo-Pacific Warm Pool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data of twenty buoy stations were used to compile a new chart of permanent currents in the surface layer (10 m depth) for the region of the Yucatan shelf (Campeche Bank). It was found that vertical variations in direction of the currents are insignificant within the shallow plateau of the banks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pliocene period is the most recent time when the Earth was globally significantly (~3°C) warmer than today. However, the existing pCO2 data for the Pliocene are sparse and there is little agreement between the various techniques used to reconstruct palaeo-pCO2. Moreover, the temporal resolution of the published records does not allow a robust assessment of the role of declining pCO2 in the intensification of the Northern Hemisphere Glaciation (INHG) and a direct comparison to other proxy records are lacking. For the first time, we use a combination of foraminiferal (delta11B) and organic biomarker (alkenone-derived carbon isotopes) proxies to determine the concentration of atmospheric CO2 over the past 5 Ma. Both proxy records show that during the warm Pliocene pCO2 was between 330 and 400 ppm, i.e. similar to today. The decrease to values similar to pre-industrial times (275-285 ppm) occurred between 3.2 Ma and 2.8 Ma - coincident with the INHG and affirming the link between global climate, the cryosphere and pCO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The geometry of the Tonga Arc implies that it has rotated approximately 17° clockwise away from the Lau Ridge as the Lau Basin formed in between. Questions have arisen about the timing of the opening, whether the arc behaved rigidly, and whether the opening occurred instead from motion of the Lau Ridge, the remanent arc. We undertook to address these questions by taking paleomagnetic samples from sediment cores drilled on the Tonga Arc at Sites 840 and 841, orienting the samples in azimuth, and comparing the paleodeclinations to expected directions. Advanced hydraulic piston corer (APC) cores from Holes 840C and 841A were oriented during drilling with a tool based on a magnetic compass and attached to the core barrel. Samples from Hole 841B were drilled with a rotary core barrel (RCB) and therefore are azimuthally unoriented. They were oriented by identifying faults and dipping beds in the core and aligning them with the same features in the Formation MicroScanner (FMS) wireline logs, which were themselves oriented with a three-axis magnetometer in the FMS tool. The best results came from the APC cores, which yielded a mean pole at -69.0°S, 112.2°E for an age of 4 Ma. This pole implies a declination anomaly of 20.8° ± 12.6° (95% confidence limit), which appears to have occurred by tectonic rotation of the Tonga Arc. This value is almost exactly that expected from the geometry of the arc and implies that it did indeed rotate clockwise as a rigid body. The large uncertainty in azimuth results from core orientation errors, which have an average standard deviation of 18.6°. The youngest cores used to calculate the APC pole contain sediments deposited during Subchron 2A (2.48-3.40 Ma), and their declinations are indistinguishable from the others. This observation suggests that most of the rotation occurred after their deposition; this conclusion must be treated with caution, however, because of the large azimuthal orientation errors. Poles from late and early Miocene sediments of Hole 841B are more difficult to interpret. Samples from this hole are mostly normal in polarity, fail a reversal test, and yield poles that suggest that the normal-polarity directions may be a recent overprint. Late Miocene reversed-polarity samples may be unaffected by this overprint; if so, they imply a declination anomaly of 51.1° ± 11.5°. This observation may indicate that, for older sediments, Tonga forearc rotations are larger than expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The timing of the most recent Neoglacial advance in the Antarctic Peninsula is important for establishing global climate teleconnections and providing important post-glacial rebound corrections to gravity-based satellite measurements of ice loss. However, obtaining accurate ages from terrestrial geomorphic and sedimentary indicators of the most recent Neoglacial advance in Antarctica has been hampered by the lack of historical records and the difficulty of dating materials in Antarctica. Here we use a new approach to dating flights of raised beaches in the South Shetland Islands of the northern Antarctic Peninsula to bracket the age of a Neoglacial advance that occurred between 1500 and 1700 AD, broadly synchronous with compilations for the timing of the Little Ice Age in the northern hemisphere. Our approach is based on optically stimulated luminescence of the underside of buried cobbles to obtain the age of beaches previously shown to have been deposited immediately inside and outside the moraines of the most recent Neoglacial advance. In addition, these beaches mark the timing of an apparent change in the rate of isostatic rebound thought to be in response to the same glacial advance within the South Shetland Islands. We use a Maxwell viscoelastic model of glacial-isostatic adjustment (GIA) to determine whether the rates of uplift calculated from the raised beaches are realistic given the limited constraints on the ice advance during this most recent Neoglacial advance. Our rebound model suggests that the subsequent melting of an additional 16-22% increase in the volume of ice within the South Shetland Islands would result in a subsequent uplift rate of 12.5 mm/yr that lasted until 1840 AD resulting in a cumulative uplift of 2.5 m. This uplift rate and magnitude are in close agreement with observed rates and magnitudes calculated from the raised beaches since the most recent Neoglacial advance along the South Shetland Islands and falls within the range of uplift rates from similar settings such as Alaska.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Maestrichtian to late Eocene bathyal benthic foraminiferal faunas at Sites 752,753, and 754 on Broken Ridge in the eastern Indian Ocean were analyzed as to their stratigraphic distribution of species to clarify the relation between faunal turnovers and paleoceanographic changes. Based on Q-mode factor analysis, eight varimax assemblages were distinguished: the Stensioina beccariiformis assemblage in the upper Maestrichtian to upper Paleocene; the Cibicidoides hyphalus assemblage in the upper Maestrichtian; the Cibicidoides cf. pseudoperlucidus assemblage in the upper Paleocene; the Anomalinoides capitatusldanicus assemblage in the uppermost Paleocene to lower Eocene; the Cibicidoides subspiratus assemblage in the lower Eocene; the Nuttallides truempyi assemblage in the lower and middle Eocene; the Osangularia sp. 1 - Hanzawaia ammophila assemblage in the upper Eocene; and the Lenticulina spp. assemblage in the uppermost Eocene, Oligocene, and lower Miocene. The presence of the Osangularia sp. 1 - Hanzawaia ammophila assemblage is related to the shallowing episode on Broken Ridge (upper bathyal), as a result of the rifting event that occurred in the middle Eocene. The most distinct faunal change (the disappearance of about 37% of the species) occurred between the S. beccariiformis assemblage and the A. capitatusldanicus assemblage, at the end of the upper Paleocene. A. capitatusldanicus, Lenticulina spp., and varied forms of Cibicidoides replaced the Velasco-type fauna at this time. The timing of this event is well correlated with the known age at South Atlantic sites (Thomas, 1990 doi:10.2973/odp.proc.sr.113.123.1990; Kennett and Stott, 1990 doi:10.2973/odp.proc.sr.113.188.1990; Katz and Miller, 1990 doi:10.2973/odp.proc.sr.114.147.1991). The primary cause of the extinction of the Stensioina beccariiformis assemblage is elusive, but may have resulted from the cessation of deep-water formation in the Antarctic (Katz and Miller, 1990), and subsequent arrival of warm saline deep water (Thomas, 1990; Kennett and Stott, 1990). Another possibility may be a weakened influence of high-salinity water formed at the low latitudes such as the Tethys Sea. The extinction event corresponds to the change from higher delta13C values in benthic foraminifers to lower ones. An interpretation of delta13C values is that the eastern Indian deep water, characterized by young and nutrient-depleted water, became old water which was devoid of a supply of new water during the latest Paleocene to early Eocene. Prior to this benthic event, signals of related faunal change were detected in the following short periods: early and late Paleocene, near the boundary of nannofossil Zone CP4, and Zone CP5 of the late Paleocene at Site 752. Among common taxa in the upper Maestrichtian, only seven species disappeared or became extinct at the Cretaceous/ Tertiary boundary at Site 752. The benthic foraminiferal population did not change for up to 2 m above the boundary, in contrast to the rapid decrease of the plankt onic foraminiferal population at the boundary. A decrease in the number of benthic foraminifers occurs after that level, corresponding to an interval of decreased numbers of planktonic foraminifers and higher abundance of volcanic ash. Reduced species diversity (H') suggests a secondary effect attributable to the dissolution of foraminiferal tests. The different responses of planktonic and benthic foraminifers to the event just above the boundary suggest that the Cretaceous/Tertiary event was a surface event as also suggested by Thomas (1990). In addition, a positive shift of delta13C in benthic foraminifers after the event indicates nutrient-depleted bottom water at Site 752.