361 resultados para Early Miocene
Resumo:
Isotopic compositions of marine sediments and fossils have been investigated from northern basins of the Mediterranean to help constrain local oceanographic and climatic changes adjacent to the uplifting Alps. Stable C and O isotope compositions of benthic and planktonic foraminifera from the Umbria-Marche region (UMC) have an offset characteristic for their habitats and the changes in composition mimic global changes, suggesting that the regional conditions of climate and the carbon cycle were controlled by global changes. The radiogenic isotope composition of these fossil assemblages allows recognition of three distinct periods. In the first period, from 25 to 19 Ma, high epsilon-Nd values and low 87Sr/86Sr of sediments and fossils support intense tectonism and volcanism, related to the opening of the western Mediterranean. In the second period, from 19 to 13 Ma the 87Sr/86Sr ratio of Mediterranean (UMC) deviate from the global ocean, which is compatible with rapid uplift of the hinterland and intense influx of Sr from Mesozoic carbonates of the western Apennines. This local control on the seawater was driven by a humid and warm climate and indicates restricted exchange of water with the global ocean. Generally, the epsilon-Nd values of the fossils are very similar to those of Indian Ocean water, with brief periods of a decrease in the epsilon-Nd values coinciding with volcanic events and maybe sea level variation at 15.2 Ma. In the third period, from 13 to 10 Ma the fossils have 87Sr/86Sr similar to those of Miocene seawater while their epsilon-Nd values change considerably with time. This indicates fluctuating influence of the Atlantic versus the Paratethys and/or locally evolved seawater in the Mediterranean driven by global sea level changes. Other investigated localities near the Alps and from the ODP 900 site are compatible with this oceanographic interpretation. However, in the late early Miocene, enhanced local control, reflecting erosion of old crustal silicate rocks near the Alps, results in higher 87Sr/86Sr.
Resumo:
Three ODP sites located on the Marion Plateau, Northeast Australian margin, were investigated for clay mineral and bulk mineralogy changes through the early to middle Miocene. Kaolinite to smectite (K/S) ratios, as well as mass accumulation rates of clays, point to a marked decrease in accumulation of smectite associated with an increase in accumulation of kaolinite starting at ~15.6 Ma, followed by a second increase in accumulation of kaolinite at ~13.2 Ma. Both of these increases are correlative to an increase in the calcite to detritus ratio. Comparison of our record with published precipitation proxies from continental Queensland indicates that increases in kaolinite did not correspond to more intense tropical-humid conditions, but instead to periods of greater aridity. Three mechanisms are explored to explain the temporal trends in clay on the Marion Plateau: sea-level changes, changes in oceanic currents, and denudation of the Australian continent followed by reworking and eolian transport of clays. Though low mass accumulation rates of kaolinite are compatible with a possible contribution of eolian material after 14 Ma, when Australia became more arid, the lateral distribution of kaolinite along slope indicates mainly fluvial input for all clays and thus rules out this mechanism as well as oceanic current transport as the main controls behind clay accumulation on the plateau. We propose a model explaining the good correlation between long-term sea-level fall, decrease in smectite accumulation, increase in kaolinite accumulation and increase in carbonate input to the distal slope locations. We hypothesize that during low sea level and thus periods of drier continental climate in Queensland, early Miocene kaolinite-rich lacustrine deposits were being reworked, and that the progradation of the heterozoan carbonate platforms towards the basin center favored input of carbonate to the distal slope sites. The major find of our study is that increase kaolinite fluxes on the Queensland margin during the early and middle Miocene did not reflect the establishment of a tropical climate, and this stresses that care must be taken when reconstructing Australian climate based on deep-sea clay records alone.
Resumo:
Calcareous nannoplankton biostratigraphy has been worked out in the eastern Mediterranean utilizing deep-sea sediments recovered from DSDP Leg 42A Sites 375 and 376. These two drill sites were located approximately 55 km west of Cyprus on the Florence Rise. Sediments, ranging in age from early Miocene (Helicosphaera ampliaperta Zone) through Holocene, contain sufficient age-diagnostic species to recognize essentially all of the lowlatitude nannoplankton zones described by Bukry, although regional, secondary marker species are needed to define some zonal boundaries. Reworked Cretaceous and Paleogene nannoplankton occur throughout the stratigraphic interval studied, but not in quantities large enough to mask indigenous species. Sedimentation rates at Sites 375 and 376 were highest in the late Miocene and late Pleistocene. Open-marine, warm-water species of discoasters are present in significant numbers throughout the Miocene and Pliocene. Earliest Pliocene assemblages contain numerous specimens of ceratoliths. Nannoplankton in post-Messinian sediments at the drill sites and the Zanclean stratotype at Capo Rossello, Sicily, indicate that the base of the Amaurolithus tricorniculatus Zone (base of Triquetrorhabdulus rugosus Subzone) corresponds with the Miocene-Pliocene boundary.
Resumo:
Oxygen and carbon isotopic records of monogeneric and monospecific benthic and planktonic foraminifer samples from Sites 744 and 738 drilled on the southern end of the Kerguelen Plateau during ODP Leg 119 reveal the evolution of polar Indian Ocean water masses from the early Paleocene to the middle Miocene. Results from Site 738 are from sediments of early Paleocene to late Eocene age and those from Site 744 are late Eocene to middle Miocene. They suggest that intermediate waters at this location did not originate in the high latitudes during the early Eocene. Surface and near-surface waters cooled gradually after the maximum warming at 56 Ma, when surface waters were about 18°C. Intermediate waters cooled after 52 Ma. The highest temperatures (lowest d18O values) of the Cenozoic occurred from 56 to 52 Ma. The records of equatorial Pacific Site 577 and Weddell Sea Site 690 resemble that of the polar Indian Ocean in this interval. The well-documented d13C excursions toward positive values in the late Paleocene and negative values in the early Eocene are represented by foraminifers increases of 1.5 per mil and following decreases of about 3 per mil. Most of the cooling in the Paleogene occurred in the middle and late Eocene. A 2°C decrease of surface water at about 38.4 Ma heralded the beginning of extensive glacial conditions in Antarctica in the early Oligocene. At Site 744, the global d18O shift just above the Eocene/Oligocene boundary is 1.15 per mil, and occurred gradually in sediments dated at 36.5-35.9 Ma. Ice-rafted debris was deposited beginning at 36.1 Ma for about the next 2 m.y. This simultaneous occurrence of the global d18O shift with ice-rafted debris is evidence for early Oligocene glaciation in East Antarctica. Moreover, early and late Oligocene Cibicidoides d18O values between 2 and 2.2 per mil indicate intermediate water cooling and a small ice-volume effect. Production of cold dense bottom water in Antarctica was intensified with continental cooling and glaciation in the early Oligocene. Comparison of Oligocene and early Miocene isotopic data from high-latitude and low-latitude deepsea sites indicates that there were probably at least two sources of bottom waters at this time.
Resumo:
The analysis of planktic foraminiferal assemblages from Site 1090 (ODP Leg 177), located in the central part of the Subantarctic Zone south of South Africa, provided a geochronology of a 330-m-thick sequence spanning the Middle Eocene to Early Pliocene. A sequence of discrete bioevents enables the calibration of the Antarctic Paleogene (AP) Zonation with lower latitude biozonal schemes for the Middle-Late Eocene interval. In spite of the poor recovery of planktic foraminiferal assemblages, a correlation with the lower latitude standard planktic foraminiferal zonations has been attempted for the whole surveyed interval. Identified bioevents have been tentatively calibrated to the geomagnetic polarity time scale following the biochronology of Berggren et al. (1995). Besides planktic foraminiferal bioevents, the disappearance of the benthic foraminifera Nuttallides truempyi has been used to approximate the Middle/Late Eocene boundary. A hiatus of at least 11.7 Myr occurs between V78 and V71 m composite depth extending from the Early Miocene to the latest Miocene-Early Pliocene. Middle Eocene assemblages exhibit a temperate affinity, while the loss of several planktic foraminiferal species by late Middle to early Late Eocene time reflects cooling. During the Late Eocene-Oligocene intense dissolution caused impoverishment of planktic foraminiferal assemblages possibly following the emplacement of cold, corrosive bottom waters. Two warming peaks are, however, observed: the late Middle Eocene is marked by the invasion of the warmer water Acarinina spinuloinflata and Hantkenina alabamensis at 40.5 Ma, while the middle Late Eocene experienced the immigration of some globigerinathekids including Globigerinatheka luterbacheri and Globigerinatheka cf. semiinvoluta at 34.3 Ma. A more continuous record is observed for the Early Miocene and the Late Miocene-Early Pliocene where planktic foraminiferal assemblages show a distinct affinity with southern mid- to high-latitude faunas.