122 resultados para Dissolution sélective
Resumo:
Finding the ideal deep-sea CaCO3 dissolution proxy is essential for quantifying the role of the marine carbonate system in regulating atmospheric pCO2 over millennia. We explore the potential of using the Globorotalia menardii fragmentation index (MFI) and size-normalized foraminifer shell weight (SNSW) as complementary indicators of deep-sea CaCO3 dissolution. MFI has strong correlations with bottom water [CO3]2-, modeled estimates of percent CaCO3 dissolved, and Mg/Ca in Pulleniatina obliquiloculata in core top samples along a depth transect on the Ontong Java Plateau (OJP) where surface ocean temperature variation is minimal. SNSW of P. obliquiloculata and Neogloboquadrina dutertrei have weak correlations with MFI-based percent dissolved, Mg/Ca in P. obliquiloculata shells and bottom water [CO3]2- on the OJP. In core top samples from the eastern equatorial Pacific (EEP), SNSW of P. obliquiloculata has moderate to strong correlations with both MFI-based percent CaCO3 dissolved estimates and surface ocean environmental parameters. SNSW of N. dutertrei shells shows a latitudinal distribution in the EEP and a moderately strong correlation with MFI-based percent dissolved estimates when samples from the equatorial part of the region are excluded. Our results suggest that there may potentially be multiple genotypes of N. dutertrei in the EEP which may be reflected in their shell weight. MFI-based percent CaCO3 dissolved estimates have no quantifiable relationship with any surface ocean environmental parameter in the EEP. Thus MFI acts as a reliable quantitative CaCO3 dissolution proxy insensitive to environmental biases within calcification waters of foraminifers.
Resumo:
Ocean acidification (OA) is expected to drive the transition of coral reef ecosystems from net calcium carbonate (CaCO3) precipitating to net dissolving within the next century. Although permeable sediments represent the largest reservoir of CaCO3 in coral reefs, the dissolution of shallow CaCO3 sands under future pCO2 levels has not been measured under natural conditions. In situ, advective chamber incubations under elevated pCO2 (~800 µatm) shifted the sediments from net precipitating to net dissolving. Pore water advection more than doubled dissolution rates (1.10 g CaCO3/m**2/day) when compared to diffusive conditions (0.42 g CaCO3/m**2 /day). Sediment dissolution could reduce net ecosystem calcification rates of the Heron Island lagoon by 8% within the next century, which is equivalent to a 25% reduction in the global average calcification rate of coral lagoons. The dissolution of CaCO3 sediments needs to be taken into account in order to address how OA will impact the net accretion of coral reefs under future predicted increases in CO2.
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-7/5-10
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-7/6-10
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-7/4-26