237 resultados para Demodex brevis
Resumo:
In the course of the voyages 9a and 9c (1967) and 19 (1970) of the RV "Meteor" samples of plankton and neuston have been taken in the area of the Great Meteor Seamount. The euphausiids of this material have been examined quantitatively as well as qualitatively in order to study the influence of the Great and Small Meteor Seamount on a vertically migrating group of plankton. 20 species could be identified. All stem from the surrounding deep water and belong to the tropical and subtropical fauna. On the plateau of the Great Meteor Seamount no indigenous species have been encountered and also the typical neritic species from the west coast off Africa are lacking. As for the euphausiids no relationships exist between the Great Meteor Seamount and the shelf area of West Africa. The dominant species around the Meteor Seamount were Euphausia brevii, Stylocheiron suhmii, E. hemigibba, S. longicorne and Thysanopoda subaequalis. Using the index of diversity (Simpson) distinct differences in the composition of species could be shown to exist between the plateau area of the Meteor Seamount and the surrounding sea. On the plateau of the Great Meteor Seamount the number of species was only 7, E. brevis and S. suhmii dominated. None of the species occurred in great numbers and none is adapted to the specific environmental conditions of the plateau of the Meteor Seamount. The fauna of the plateau is a depauperate one as compared with that of the surrounding sea. This can be explained by the fact that adult euphausiids require for their existence greater water depths than are found above the plateau of the Meteor Seamount.
Resumo:
At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.
Resumo:
Planktonic foraminifers from Ocean Drilling Program Leg 182, Holes 1126B and 1126C, 1128B and 1128C, 1130A and 1130B, 1132B, and 1134A and 1134B confirm the neritic record that during the early Miocene the Great Australian Bight region was in a cool-temperate regime with abundant Globoturborotalita woodi. Warm marine environments started to develop in the later part of the early Miocene, and the region became warm temperate to subtropical in the early middle Miocene with abundant Globigerinoides, Orbulina, and Globorotalia, corresponding to global warming at the Miocene climatic optimum. Fluctuations between cool- and warm-temperate conditions prevailed during the late Miocene, as indicated by abundant Globoconella conoidea and Menardella spp. A major change in planktonic foraminiferal assemblages close to the Miocene/Pliocene boundary not only drove many Miocene species into extinction but also brought about such new species as Globorotalia crassaformis and Globoconella puncticulata. Warm-temperate environments continued into the early and mid-Pliocene before being replaced by cooler conditions, supporting numerous Globoconella inflata and Globigerina quinqueloba. Based on data from this study and published results from the Australia-New Zealand region, we established a local planktonic foraminifer zonation scheme for separating the southern Australian Neogene (SAN) into Zones SAN1 to SAN19 characterizing the Miocene and Zones SAN20 to SAN25 characterizing the Pliocene. The Neogene sections from the Great Australian Bight are bounded by hiatuses of ~0.5 to >3 m.y. in duration, although poor core recovery in some holes obscured a proper biostratigraphic resolution. A total of 15 hiatuses, numbered 1 to 15, were identified as synchronous events from the base of the Miocene to the lower part of the Pleistocene. We believe that these are local manifestations of major third-order boundaries at about (1) 23.8, (2) 22.3, (3) 20.5, (4) 18.7, (5) 16.4, (6) 14.8, (7) 13.5, (8) 11.5, (9) 9.3, (10) 7.0, (11) 6.0, (12) 4.5, (13) 3.5, (14) 2.5, and (15) 1.5 Ma, respectively. This hiatus-bounded Neogene succession samples regional transgressions and stages of southern Australia and reveals its stepwise evolutionary history.
Resumo:
Eocene through Pliocene benthic foraminifers were examined from seven sites located at middle and lower bathyal depths on the Lord Howe Rise in the Tasman Sea, from another site at lower bathyal depths in the Coral Sea, and from a site in the intermediate-depth, hemipelagic province of the Chatham Rise, east of southern New Zealand. Age-related, depth-related, and bioprovincial faunal variations are documented in this chapter. One new species, Rectuvigerina tasmana, is named. The paleoecologic indications of several key groups, including the miliolids, uvigerinids, nuttallitids, and cibicidids, are combined with sedimentologic and stable isotopic tracers to interpret paleoceanographic changes in the Tasman Sea. Because the total stratigraphic ranges of many bathyal benthic foraminifers are not yet known, most endpoints in the Tasman Sea are considered ecologically controlled events. The disappearances of Uvigerina rippensis and Cibicidoidesparki and the first appearances of U. pigmaea, Sphaeroidina bulloides, and Rotaliatina sulcigera at the Eocene/Oligocene boundary can be considered evolutionary events, as also can the first appearance of Cibicides wuellerstorfi in Zone NN5. Species which are restricted to the lower bathyal zone except during discrete pulses, most of which are related to the development of glacial conditions, include Melonis pompilioides, M. sphaeroides, Pullenia quinqueloba, Nuttallides umbonifera, and U. hispido-costata. Middle bathyal indigenes include U. spinulosa, U. gemmaeformis, Ehrenbergina marwicki, R. sulcigera, and all rectuvigerinids except Rectuvigerina spinea. Although the miliolids first occurred at lower bathyal depths, they were more common in the middle bathyal zone. Although the Neogene hispido-costate uvigerinids first developed at lower bathyal depths and at higher middle latitude sites, in the later Neogene this group migrated to shallower depths and became predominant also in the middle bathyal zone. Despite the relatively similar sedimentologic settings at the six middle bathyal Tasman sites, there was extensive intrageneric and intraspecific geographic variation. Mililiolids, strongly ornamented brizalinids, bolivinitids, Bulimina aculeata, Osangularia culter, and strongly porous morphotypes were more common at higher latitudes. Osangularia bengalensis, striate brizalinids such as Brizalina subaenariensis, Gaudryina solida, osangularids in general, and finely porous morphotypes were more common in the subtropics. There was strong covariance between faunas at lower middle latitude, lower bathyal Site 591, and higher middle latitude, middle bathyal Site 593. The following oceanographic history of the Tasman Sea is proposed; using the stable isotopic record as evidence for glacials and examining the ecologic correlations between (1) miliolids and carbonate saturation, (2) nuttallitids and undersaturated, cooled, or "new" water masses, (3) uvigerinids with high organic carbon in the sediment and high rates of sediment accumulation, and (4) cibicidids and terrestrial organic carbon. The glacial located near the Eocene/Oligocene boundary is characterized by the penetration of cooler, more corrosive waters at intermediate depths in high southern latitudes. This may have caused overturn, upwelling pulses, in other Tasman areas. The development of Neogenelike conditions began in the late Oligocene (Zone NP24/NP25) with the evolution of several common Neogene species. A large number of Paleogene benthics disappeared gradually through the course of the early Miocene, which was not well preserved at any Tasman site. Corrosive conditions shallowed into the middle bathyal zone in several pulses during the early Miocene. The development of glacial conditions in the middle Miocene was accompanied by major changes throughout the Tasman Sea. Sediment accumulation rates increased and high-productivity faunas and corrosive conditions developed at all but the lowest-latitude Site 588. This increase in productivity and accumulation rate is attributed to the eutrophication of Antarctic water masses feeding Tasman current systems, as well as to invigorated circulation in general. It overlaps with the beginning of the Pacific High-productivity Episode (10-5 Ma). During the latest Miocene glacial episode, corrosive conditions developed at lower bathyal depths, while cooler water and lower nutrient levels shallowed to middle bathyal depths. Lower input of terrestrial organic carbon may be related to the lower nutrient levels of this time and to the termination of the Pacific High-productivity Episode. The moderate glacial episode during the mid-Pliocene (Zone NN15/NN16, ~3.2 Ma) corresponds to a decline in sediment accumulation rates and a reorganization of faunas unlike that of all other times. New genera proliferate and indices for cool, noncorrosive conditions and high organic carbon expand throughout the middle bathyal zone coeval with the sedimentation rate decreases. By the latest Pliocene (about 2.5 Ma), however, during another glacial episode, faunal patterns typical of this and later glacials develop throughout the Tasman Sea. Benthic foraminiferal patterns suggest increased input of terrestrial organic matter to Tasman Sea sediments during this episode and during later glacials.
Resumo:
Late Oligocene to late Pliocene vertical water-mass stratification along depth traverses in the northern Indian Ocean is depicted in this paper by benthic foraminifer index faunas. During most of this time, benthic faunas indicate well-oxygenated, bottom-water conditions at all depths except under the southern Indian upwelling and in the Pliocene in the southern Arabian Sea. Faunas suggest the initiation of lower oxygen conditions at intermediate depths in the northern Indian Ocean beginning in Oligocene Zone P21a. Lower oxygen conditions intensified during primary productivity pulses, possibly related to increased upwelling vigor, in the latest Oligocene and throughout most of the late middle through late Miocene. During times of elevated primary production, there may be more oxygen flux into sedimentary pore waters and the shallow infaunal habitat may become more oxygenated. One criterion for locating the source of "new" water masses is vertical homogeneity of benthic foraminifer indexes for well-oxygenated water masses from intermediate through abyssal depths. In the northern Mascarene Basin, this type of faunal homogeneity with depth corroborates the proposal that the northern Indian Ocean was an area of sinking well-oxygenated waters through most of the Miocene before Zone N17. Oxygenated, possibly "new" intermediate-water masses in the low- to middle-latitude Mascarene and Central Indian basins first developed in the late Oligocene. These well-oxygenated waters were probably more fertile than the Antarctic Intermediate Waters (AAIW) that cover intermediate depths in these areas today. Production of intermediate waters more similar to modern AAIW is indicated by the sparse benthic population of epifaunal rotaloid species in the northern Mascarene Basin during middle Miocene Zone N9 and from early through late Pliocene time. Deep-water characteristics are more difficult to interpret because of the extensive redeposition at the deeper sites. Redeposited intermediate, rather than shallow, water fossils and erosion from north to south in the Mascarene Basin are incompatible with the sluggish circulation from south to north through the western Indian Ocean basins today. Such erosion could result from the vigorous sinking of an intermediate-depth water mass of northern origin. Before late Oligocene Zone P22, benthic faunas indicate a twofold subdivision of the troposphere, with the boundary between upper and lower well-oxygenated water masses located from 2500-3000 mbsl. No characteristic bottom-water fauna developed before the end of late Oligocene Zone P22. Deep and abyssal benthic indexes suggest the development of water masses similar to those of the present day in the latest Miocene. Faunas containing deep-water benthic indexes, including the uvigerinids, suggestive of a water mass similar to modern Indian Deep Water (IDW), appeared during the late Miocene in the northern Mascarene and Central Indian basins. In the early Pliocene, this deep-water fauna was found only in the Central Indian Basin, whereas a fauna typical of modern Antarctic Bottom Water (AABW) spread through deep waters at 2800 mbsl in the Mascarene Basin. By late Pliocene Zone N21, however, deep-water faunas similar to their modern analogs were developed in both the eastern and western basins. Abyssal faunas, studied only in the Mascarene Basin, show more or less similarity to those under modern AABW. Bottom-water faunas containing Nuttallides umbonifera or Epistominella exiguua were first differentiated at the end of Zone P22, then appeared episodically during the early Miocene. These AABW-type faunas reappeared and migrated updepth into deep waters during the glacial episodes at the end of the Miocene and at the beginning of the Pliocene. By late Pliocene Zone N21, however, a bottom-water fauna similar to that under eastern Indian Bottom Water (IBW) developed in the Mascarene Basin. Modern bottom-water characteristics of the Mascarene Basin must have developed after ZoneN21.
Resumo:
An essentially complete Paleogene record was recovered on the Central and Southern Kerguelen plateaus (55°-59°S) in a calcareous biofacies. Recovery deteriorated in the middle Eocene and down to the upper Paleocene because of the presence of interbedded cherts and chalks. The stratigraphic distribution of about 70 taxa of planktonic foraminifers recovered at Sites 747-749 is reported in this paper. Faunas exhibited fairly high diversity (approximately 20-25 species) in the early Eocene, followed by a gradual reduction in diversity in the middle Eocene. A brief incursion of tropical keeled morozovellids occurred near the Paleocene/Eocene boundary, similar to that recorded on the Maud Rise (ODP Sites 689 and 690). The high-latitude Paleogene zonal scheme developed for ODP Leg 113 sites has been adopted (with minor modifications) for the lower Eocene-Oligocene part of the Kerguelen Plateau record. A representative Oligocene (polarity chronozones 7-13) and late Eocene-late middle Eocene (questionably polarity chronozones 16-18) magnetostratigraphic record has allowed the calibration of several biostratigraphic datum levels to the standard Global Polarity Time Scale (GPTS) and established their essential synchrony between low and high latitudes.