80 resultados para Deciduous dentition


Relevância:

10.00% 10.00%

Publicador:

Resumo:

(expanded by Eberhard Grüger, Göttingen) The site "Höllerer See" is a lake in the northern foreland of the Alps, about 30 km north of the city of Salzburg/Austria, situated in the south-western part of Oberösterreich/Austria. A 2 m long piston core from this locality, consisting entirely of calcareous gyttja, was studied by pollen analysis. The three lowermost samples (1.98, 1.95 and 1.92 m) were deposited during the Preboreal when Pinus and Betula were still the dominating forest trees. High pollen values of thermophilous woody species (mainly Corylus and Quercus, but also Ulmus, Tilia, Fraxinus) prove the Boreal age of the next younger sample (1.91 m). The following two pollen spectra attest that Alnus (1.89 m) and - later (1.88 m) - Fagus had become important members of the local (Alnus) and the regional (Fagus) vegetation. From this level up to the top of the profile these two tree taxa contribute - together with Betula - always 50 to 80 % to the arboreal pollen sum. The upper 1.89 m of sediment of the Höllerer See core evidently date from the Subboreal and the Subatlantic. As Preboreal sediment was stated at the base of the profile it must be concluded that most of the Boreal and the Atlantic is - for whatever reason - not represented by sediment in this core. As no radiocarbon dates are available age estimates of the distinguished pollen zones can be achieved only by correlating major changes of the former vegetation with historical events which probably influenced the then contemporary vegetation. The pollen grains of the Triticum and Hordeum type found in samples of zone 2.1 might indicate the growing of cereals in the region during the Late Bronze Age. The first pollen grains of Secale date from the boundary Hallstatt/Latène Age (zone 2.2). The cereal curves become continuous in Bavarian times (Bajuwarenzeit, Middle Ages, zone 3.3). The Plantago laceolata curve, continuous since 1.7 m depth (zone 2.1), points to animal breeding since the Early Subatlantic (Hallstattzeit). This curve reaches its absolute maximum in Roman time (zone 3.1). Roman time forest clearance caused a drastic decrease of tree pollen curves (start of zone 3.1). Values of anthropogenic indicators as high as in zone 3.1 are found again - after a distinct decrease in zone 3.2 - not till the Bavarians settled in the region (6th century). Maximal Fagus values and the simultaneous total lack of anthropogenic indicators mark the Migration Period (zone 3.2). The Younger Subatlantic (zone 4) is characterized by a decrease of deciduous forests due to medieval forest clearance. At the same time the conifers Pinus and Picea gained in importance. The lake was probably used for retting hemp in Medieval times. The distinction of the pollen grains of Cannabis and Humulus might not be certain in all cases. It is known that hemp as well as hop was cultivated in the study area. Markers were added to the samples at the beginning of pollen preparation (13500 Lycopodium spores, sample volume 0.5 cm**3) and counted together with the pollen grains. Therefore pollen concentrations can be calculated: Concentration = C * F / V (with C = number of grains of a particular pollen type, V = volume of the untreated pollen sample, F = marker added/marker counted). F ranges from 39 to 1688. Factors that large are not suited to produce reliably interpretable pollen concentrations. Consequently no use was made of the pollen concentrations in this thesis, although a concentration diagram is added.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current study presents quantitative reconstructions of tree cover, annual precipitation and mean July temperature derived from the pollen record from Lake Billyakh (65°17'N, 126°47'E, 340 m above sea level) spanning the last ca. 50 kyr. The reconstruction of tree cover suggests presence of woody plants through the entire analyzed time interval, although trees played only a minor role in the vegetation around Lake Billyakh prior to 14 kyr BP (<5%). This result corroborates low percentages of tree pollen and low scores of the cold deciduous forest biome in the PG1755 record from Lake Billyakh. The reconstructed values of the mean temperature of the warmest month ~8-10 °C do not support larch forest or woodland around Lake Billyakh during the coldest phase of the last glacial between ~32 and ~15 kyr BP. However, modern cases from northern Siberia, ca. 750 km north of Lake Billyakh, demonstrate that individual larch plants can grow within shrub and grass tundra landscape in very low mean July temperatures of about 8 °C. This makes plausible our hypothesis that the western and southern foreland of the Verkhoyansk Mountains could provide enough moist and warm microhabitats and allow individual larch specimens to survive climatic extremes of the last glacial. Reconstructed mean values of precipitation are about 270 mm/yr during the last glacial interval. This value is almost 100 mm higher than modern averages reported for the extreme-continental north-eastern Siberia east of Lake Billyakh, where larch-dominated cold deciduous forest grows at present. This suggests that last glacial environments around Lake Billyakh were never too dry for larch to grow and that the summer warmth was the main factor, which limited tree growth during the last glacial interval. The n-alkane analysis of the Siberian plants presented in this study demonstrates rather complex alkane distribution patterns, which challenge the interpretation of the fossil records. In particular, extremely low n-alkane concentrations in the leaves of local coniferous trees and shrubs suggest that their contribution to the litter and therefore to the fossil lake sediments might be not high enough for tracing the Quaternary history of the needleleaved taxa using the n-alkane biomarker method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early- and Middle-Miocene sediments of the North Alpine Foreland Basin (NAFB) in Southern Germany contain one of the world richest regional records of silicified wood. Here we analyze over 1,000 identifiable samples, belonging to 80 wood anatomical taxa from 61 stratigraphically well-dated localities using principally the Coexistence Approach. The samples investigated originate from fluvial sediments representing periods of intensified surface runoff in the NAFB and therefore represent and provide information pertaining to the wet end-member of the fluctuating climate system. The dry end of the climate system is represented in the profiles either by hiatuses or palaeosoils. The dataset is split into four xylofloras: (I) the Ortenburg xyloflora (Late Ottnangian; ~17.5 to 17.3 Ma) originating from a paratropical evergreen Carapoxylon (Xylocarpus) forest; (II) the Southern Franconian Alb xyloflora (Late Karpatian; 17.0 to ~16.3 Ma) originating from a subtropical semideciduous limestone forest; (III) the upper Older Series xyloflora (Early Badenian; ~16.3 to ~15.3 Ma) originating from a subtropical oak-laurel forest; and (IV) the upper Middle Series xyloflora (Middle Badenian; 14.3 to ~13.8 Ma) originating from a subtropical dry deciduous forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Question: How do interactions between the physical environment and biotic properties of vegetation influence the formation of small patterned-ground features along the Arctic bioclimate gradient? Location: At 68° to 78°N: six locations along the Dalton Highway in arctic Alaska and three in Canada (Banks Island, Prince Patrick Island and Ellef Ringnes Island). Methods: We analysed floristic and structural vegetation, biomass and abiotic data (soil chemical and physical parameters, the n-factor [a soil thermal index] and spectral information [NDVI, LAI]) on 147 microhabitat releves of zonalpatterned-ground features. Using mapping, table analysis (JUICE) and ordination techniques (NMDS). Results: Table analysis using JUICE and the phi-coefficient to identify diagnostic species revealed clear groups of diagnostic plant taxa in four of the five zonal vegetation complexes. Plant communities and zonal complexes were generally well separated in the NMDS ordination. The Alaska and Canada communities were spatially separated in the ordination because of different glacial histories and location in separate floristic provinces, but there was no single controlling environmental gradient. Vegetation structure, particularly that of bryophytes and total biomass, strongly affected thermal properties of the soils. Patterned-ground complexes with the largest thermal differential between the patterned-ground features and the surrounding vegetation exhibited the clearest patterned-ground morphologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the sedimentary record of Lake Hancza (northeastern Poland) using a multi-proxy approach, focusing on early to mid-Holocene climatic and environmental changes. AMS 14C dating of terrestrial macrofossils and sedimentation rate estimates from occasional varve thickness measurements were used to establish a chronology. The onset of the Holocene at c. 11600 cal. a BP is marked by the decline of Lateglacial shrub vegetation and a shift from clastic-detrital deposition to an autochthonous sedimentation dominated by biochemical calcite precipitation. Between 10000 and 9000 cal. a BP, a further environmental and climatic improvement is indicated by the spread of deciduous forests, an increase in lake organic matter and a 1.7% rise in the oxygen isotope ratios of both endogenic calcite and ostracod valves. Rising d18O values were probably caused by a combination of hydrological and climatic factors. The persistence of relatively cold and dry climate conditions in northeastern Poland during the first one and a half millennia of the Holocene could be related to a regional eastern European atmospheric circulation pattern. Prevailing anticyclonic circulation linked to a high-pressure cell above the retreating Scandinavian Ice Sheet might have blocked the influence of warm and moist Westerlies and attenuated the early Holocene climatic amelioration in the Lake Hancza region until the final decay of the ice sheet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To better understand the environmental variability during the Holsteinian interglacial, we have palynologically analyzed a new core from Dethlingen, northern Germany, at a decadal resolution. Our data provide insights into the vegetation dynamics and thus also climate variability during the meso- to telocratic forest phases of the interglacial. Temperate mixed forests dominated the regional landscape throughout the Holsteinian. However, changes in the forest composition during the younger stages of the interglacial suggest a climatic transition towards milder conditions in winter. The strong presence of boreal floral elements during the older stages of the Holsteinian interglacial suggests a high seasonality. In contrast, during the younger stages the development of sub-Atlantic and Atlantic floral elements suggests increasingly warm and humid climatic conditions. Peak warming during the younger stage of the Holsteinian is marked by the maximum pollen abundances of Buxus, Abies, and Quercus. Although the vegetation dynamics suggest a general warming trend throughout the Holsteinian interglacial, abrupt as well as gradual changes in the relative abundances of temperate plants indicate considerable climatic variability. In particular, two marked declines in temperate taxa leading to the transient development of boreal and sub-temperate forests indicate short-term climatic oscillations that occurred within full interglacial conditions. The palynological signatures of these two regressive phases in vegetation development differ with regard to the expansion of pioneer trees, the abundances and rates of change of temperate taxa, and the presence of frost-sensitive taxa. These differences point to different mechanisms responsible for the individual regressive phases. Assuming a correlation of the interglacial at Dethlingen with Marine Isotope Stage (MIS) 11, our data suggest that temperate forests prevailed in northern Germany during the younger parts of MIS 11c.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

. Separating continuously measured stem radius (SR) fluctuations into growth-induced irreversible stem expansion (GRO) and tree water deficit-induced reversible stem shrinkage (TWD) requires a concept to decide on potential growth processes during periods of shrinking and expanding SR below a precedent maximum. Here we investigated two physiological concepts: the linear growth (LG) concept assuming linear growth vs. the zero growth (ZG) concept assuming no growth during periods of shrunken stems. . We evaluated the physiological mechanisms underlying these two concepts and assessed the respective plausibility with SR data obtained from 15 deciduous and evergreen trees. . The LG concept showed steady growth rates, whereas the ZG concept showed strongly varying growth rates over time, more in accordance with mechanistic expectations. Further, growth increased for maximally 120 min after periods of shrunken stems, indicating limited growth activity during that period. However, the fraction of this extra growth was found to be small. Furthermore, TWD of the ZG concept was better explained by a hydraulic plant model than TWD of the LG concept. . We conclude that periods of shrunken stems allow for very little growth in the four tree species investigated. However, further studies should focus on obtaining independent growth data to ultimately validate these findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen floras were obtained from Miocene sediments recovered at four sites drilled during Ocean Drilling Program Leg 127. The local pollen floras of each site were correlated to the standard pollen zones of northeast Japan by using the concept of the essential members for each pollen zone. At Site 797, the complete floral range was obtained for recognition of the NP2 zone and the pollen components of the NP1 zone were also clarified continuously. The ages of the boundaries between pollen zones NP4/NP3, NP3/NP2, and NP2/NP1 are estimated to be about 7 Ma, 13 Ma, and 17-18.5 Ma, respectively. Even in the same pollen zone, the ratios of major pollen taxa vary with the location. This variation is expressed on maps representing two different times during the Miocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This initial survey of pollen from 192 samples from Hole 794A, supplemented by 189 samples from Hole 795 and 797B, suggests that marine pollen assemblages from the southwestern Sea of Japan provide a consistent Neogene pollen stratigraphy and a solid basis for regional paleoenvironmental reconstructions. Late Miocene vegetation inferred from these pollen data, a mix of conifer and broad-leaf elements with now-extinct Tertiary types well represented, appears similar to Aniai-type floras of Japan. During the late Miocene through early Pliocene, as Tertiary types declined, conifers (including the Sequoia/Cryptomeria group) became more prominent than broad-leaf elements, and herbs played an increasing role in the vegetation. Middle Pliocene pollen assemblages imply significant changes in forest composition. In a 500,000-yr interval centered at ~4 m.y., Tertiary and warm-temperate deciduous types re-expanded and were comparable to or greater than middle-late Miocene levels. Temperate and cold-temperate conifers {Picea, Abies, Tsuga) were minimal. Subsequently, Tertiary and deciduous forest components (including Quercus) decreased, Picea, Tsuga, and Abies were again prominent, and herbs formed an increasingly larger part of the vegetation. Between ~3 m.y. and -2.5 m.y., conifers, except for Cryptomeria types, were prominent, Quercus continued to decline, and other broad-leaf trees were minor. Over the last 2 Ma, the very large and frequent changes in forest composition inferred from pollen in the Sea of Japan correspond to forest dynamics inferred from changes in pollen and floral assemblages throughout Japan. Given present vegetation/climate relationships, broad trends in Neogene climate inferred from these preliminary pollen data include decreasing temperatures, increasing seasonality in temperatures and precipitation, and increasing amplitude and frequency of climatic change. Two significant events, centered at ~9 m.y. and ~4 m.y., punctuate the gradual deterioration of the equable warm, humid subtropical/warm temperate late Miocene and early Pliocene climates. The first indication of cold-temperate conditions comparable to those of Pleistocene glacial intervals occurs ~3 m.y. Subsequently, regional climates oscillated rapidly between temperate and cold-temperate regimes that supported conifer and mixed broad-leaf forests; however, climatic extremes were apparently never great enough to displace warm-temperate and temperate forests from Honshu nor to produce arctic climates on the west coast of Japan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

25 datasets (13 fossil leaf and pollen assemblages, 12 quantitative palaeoclimatic datasets) are provided in order to analyse Early Miocene palaeoclimate in Kazakhstan. The rich fossil record in Kazakhstan documents that during the Oligocene and Early Miocene this area in Central Eurasia was densely forested with warm-temperate deciduous trees and shrubs of the so-called "Turgayan flora". 29 fossil floras from 13 localities have been selected for a quantitative analysis of the Aquitanian (early Early Miocene) climate situation in Kazakhstan. The assessed mean annual temperatures generally place around 15 °C, while values of mean annual precipitation are of about 1000 mm. In combination with several other climate parameters estimated (temperatures of warmest and coldest months, precipitation rates of wettest, driest and warmest months), these data reflect uniform climatic conditions over several thousands of square kilometres. Data of temperature parameters show slight spatial differentiations, with generally cooler mean annual temperatures and higher seasonality (i.e. warmer summers and colder winters) in the north-eastern part of the study area compared with the south-western area around Lake Aral. As compared with palaeoclimate estimates for the European and East Asian Aquitanian, the central part of the Eurasian continent reveals evident signals of higher seasonality and slightly increased continentality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a pollen record of the marine core MD96-2048 retrieved by the Marion Dufresne from the Indian Ocean ~120 km south of the Limpopo River mouth. The sedimentation at the site is slow and continuous. The upper 6 m (spanning the past 342 Ka) have been analysed for pollen and spores at millennial resolution. The terrestrial pollen assemblages indicate that during interglacials, the vegetation of eastern South Africa and southern Mozambique largely consisted of evergreen and deciduous forests. During glacials open mountainous scrubland dominated. Montane forest with Podocarpus extended during humid periods was favoured by strong local insolation. Correlation with the sea surface temperature record of the same core indicates that the extension of mountainous scrubland primarily depends on sea surface temperatures of the Agulhas Current. Our record corroborates terrestrial evidence of the extension of open mountainous scrubland (including fynbos-like species of the high-altitude Grassland biome) for the last glacial as well as for other glacial periods of the past 300 Ka.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide new evidence on sea surface temperature (SST) variations and paleoceanographic/paleoenvironmental changes over the past 1500 years for the north Aegean Sea (NE Mediterranean). The reconstructions are based on multiproxy analyses, obtained from the high resolution (decadal to multi-decadal) marine record M2 retrieved from the Athos basin. Reconstructed SSTs show an increase from ca. 850 to 950 AD and from ca. 1100 to 1300 AD. A cooling phase of almost 1.5 °C is observed from ca. 1600 AD to 1700 AD. This seems to have been the starting point of a continuous SST warming trend until the end of the reconstructed period, interrupted by two prominent cooling events at 1832 ± 15 AD and 1995 ± 1 AD. Application of an adaptive Kernel smoothing suggests that the current warming in the reconstructed SSTs of the north Aegean might be unprecedented in the context of the past 1500 years. Internal variability in atmospheric/oceanic circulations systems as well as external forcing as solar radiation and volcanic activity could have affected temperature variations in the north Aegean Sea over the past 1500 years. The marked temperature drop of approximately ~2 °C at 1832 ± 15 yr AD could be related to the 1809 ?D 'unknown' and the 1815 AD Tambora volcanic eruptions. Paleoenvironmental proxy-indices of the M2 record show enhanced riverine/continental inputs in the northern Aegean after ca. 1450 AD. The paleoclimatic evidence derived from the M2 record is combined with a socio-environmental study of the history of the north Aegean region. We show that the cultivation of temperature-sensitive crops, i.e. walnut, vine and olive, co-occurred with stable and warmer temperatures, while its end coincided with a significant episode of cooler temperatures. Periods of agricultural growth in Macedonia coincide with periods of warmer and more stable SSTs, but further exploration is required in order to identify the causal links behind the observed phenomena. The Black Death likely caused major changes in agricultural activity in the north Aegean region, as reflected in the pollen data from land sites of Macedonia and the M2 proxy-reconstructions. Finally, we conclude that the early modern peaks in mountain vegetation in the Rhodope and Macedonia highlands, visible also in the M2 record, were very likely climate-driven.