123 resultados para Creative processes
Resumo:
With global climate change, ocean warming and acidification occur concomitantly. In this study, we tested the hypothesis that increasing CO2 levels affect the acid-base balance and reduce the activity capacity of the Arctic spider crab Hyas araneus, especially at the limits of thermal tolerance. Crabs were acclimated to projected oceanic CO2 levels for 12 days (today: 380, towards the year 2100: 750 and 1,120 and beyond: 3,000 ?atm) and at two temperatures (1 and 4 °C). Effects of these treatments on the righting response (RR) were determined (1) at acclimation temperatures followed by (2) righting when exposed to an additional acute (15 min) heat stress at 12 °C. Prior to (resting) and after the consecutive stresses of combined righting activity and heat exposure, acid-base status and lactate contents were measured in the haemolymph. Under resting conditions, CO2 caused a decrease in haemolymph pH and an increase in oxygen partial pressure. Despite some buffering via an accumulation of bicarbonate, the extracellular acidosis remained uncompensated at 1 °C, a trend exacerbated when animals were acclimated to 4 °C. The additional combined exposure to activity and heat had only a slight effect on blood gas and acid-base status. Righting activity in all crabs incubated at 1 and 4 °C was unaffected by elevated CO2 levels or acute heat stress but was significantly reduced when both stressors acted synergistically. This impact was much stronger in the group acclimated at 1 °C where some individuals acclimated to high CO2 levels stopped responding. Lactate only accumulated in the haemolymph after combined righting and heat stress. In the group acclimated to 1 °C, lactate content was highest under normocapnia and lowest at the highest CO2 level in line with the finding that RR was largely reduced. In crabs acclimated to 4 °C, the RR was less affected by CO2 such that activity caused lactate to increase with rising CO2 levels. In line with the concept of oxygen and capacity limited thermal tolerance, all animals exposed to temperature extremes displayed a reduction in scope for performance, a trend exacerbated by increasing CO2 levels. Additionally, the differences seen between cold- and warm-acclimated H. araneus after heat stress indicate that a small shift to higher acclimation temperatures also alleviates the response to temperature extremes, indicating a shift in the thermal tolerance window which reduces susceptibility to additional CO2 exposure.
Resumo:
Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.
Resumo:
CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa) to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations) to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively), growth and photosynthetic carbon fixation rates of high CO2 grown cells were enhanced by 5% and 12%, respectively, and dark respiration stimulated by 34% compared to cells grown at ambient CO2. The half saturation constant (Km) for carbon fixation (dissolved inorganic carbon, DIC) increased by 20% under the low pH and high CO2 condition, reflecting a decreased affinity for HCO3- or/and CO2 and down-regulated carbon concentrating mechanism (CCM). In the high CO2 grown cells, the electron transport rate from photosystem II (PSII) was photoinhibited to a greater extent at high levels of photosynthetically active radiation, while non-photochemical quenching was reduced compared to low CO2 grown cells. This was probably due to the down-regulation of CCM, which serves as a sink for excessive energy. The balance between these positive and negative effects on diatom productivity will be a key factor in determining the net effect of rising atmospheric CO2 on ocean primary production.
Resumo:
Several experiments have shown a decrease of growth and calcification of organisms at decreased pH levels. There is a growing interest to focus on early life stages that are believed to be more sensitive to environmental disturbances such as hypercapnia. Here, we present experimental data, acquired in a commercial hatchery, demonstrating that the growth of planktonic mussel (Mytilus edulis) larvae is significantly affected by a decrease of pH to a level expected for the end of the century. Even though there was no significant effect of a 0.25-0.34 pH unit decrease on hatching and mortality rates during the first 2 days of development nor during the following 13-day period prior to settlement, final shells were respectively 4.5±1.3 and 6.0±2.3% smaller at pHNBS~7.8 (pCO2~1100-1200 µatm) than at a control pHNBS of ~8.1 (pCO2~460-640 µatm). Moreover, a decrease of 12.0±5.4% of shell thickness was observed after 15d of development. More severe impacts were found with a decrease of ~0.5 pHNBS unit during the first 2 days of development which could be attributed to a decrease of calcification due to a slight undersaturation of seawater with respect to aragonite. Indeed, important effects on both hatching and D-veliger shell growth were found. Hatching rates were 24±4% lower while D-veliger shells were 12.7±0.9% smaller at pHNBS~7.6 (pCO2~1900 µatm) than at a control pHNBS of ~8.1 (pCO2~540 µatm). Although these results show that blue mussel larvae are still able to develop a shell in seawater undersaturated with respect to aragonite, the observed decreases of hatching rates and shell growth could lead to a significant decrease of the settlement success. As the environmental conditions considered in this study do not necessarily reflect the natural conditions experienced by this species at the time of spawning, future studies will need to consider the whole larval cycle (from fertilization to settlement) under environmentally relevant conditions in order to investigate the potential ecological and economical losses of a decrease of this species fitness in the field.