755 resultados para Columbia University.
Resumo:
A comparison of cadmium/calcium (Cd/Ca) records of benthic foraminifera from a deep Cape Basin and a deep eastern equatorial Pacific core suggests that over the past 400,000 years, the nutrient concentration of Circumpolar Deep Water (CPDW) has always been lower than that of the deep Pacific. The data further suggest that at the 100,000- and 23,000-year orbital periods, the contribution of North Atlantic Deep Water to CPDW is at a maximum during periods of ice growth and at a minimum during periods of ice decay. These results are not in agreement with results based on carbon isotope records of benthic foraminifera, which suggest intervals of CPDW nutrient enrichment relative to the deep Pacific and an approximately in-phase relationship between CPDW nutrient concentration and ice volume. Resolution of the apparent conflict between delta13C and Cd/Ca data may provide important constraints on past deep-ocean circulation and nutrient variability.
Resumo:
Under present climate conditions, convection at high latitudes of the North Pacific is restricted to shallower depths than in the North Atlantic. To what extent this asymmetry between the two ocean basins was maintained over the past 20 kyr is poorly known because there are few unambiguous proxy records of ventilation from the North Pacific. We present new data for two sediment cores from the California margin at 800 and 1600 m depth to argue that the depth of ventilation shifted repeatedly in the northeast Pacific over the course of deglaciation. The evidence includes benthic foraminiferal Cd/Ca, 18O/16O, and 13C/12C data as well as radiocarbon age differences between benthic and planktonic foraminifera. A number of features in the shallower of the two cores, including an interval of laminated sediments, are consistent with changes in ventilation over the past 20 kyr suggested by alternations between laminated and bioturbated sediments in the Santa Barbara Basin and the Gulf of California [Keigwin and Jones, 1990 doi:10.1029/PA005i006p01009; Kennett and Ingram, 1995 doi:10.1038/377510a0; Behl and Kennett, 1996 doi:10.1038/379243a0]. Data from the deeper of the two California margin cores suggest that during times of reduced ventilation at 800 m, ventilation was enhanced at 1600 m depth, and vice versa. This pronounced depth dependence of ventilation needs to be taken into account when exploring potential teleconnections between the North Pacific and the North Atlantic.
Resumo:
Variations in the contribution of North Atlantic Deep Water (NADW), relative to North Pacific Deep Water (NPDW), to the Southern Ocean, are assessed by comparing delta13C records from the mid-depth North Atlantic, deep Southern Ocean, and deep equatorial Pacific Ocean. In general, the relative contribution of NADW was greater during interglaciations than glaciations of the past 550,000 years. An increase in the NADW flux to the Southern Ocean since the last glaciation was proposed to have resulted in higher atmospheric CO2 in the Holocene (Broecker and Peng, 1989, doi:10.1029/GB003i003p00215). Glacial-interglacial variations in the proportion of NADW in the Southern Ocean may have also influenced atmospheric CO2 levels over the past 550,000 years. The greatest relative flux of NADW to the Southern Ocean occurred during interglacial stage 11. Faunal data suggest that the North Atlantic polar front and southern Indian Ocean subtropical convergence zone were located farthest poleward during stage 11. Warmth in these locations and a strong southward flux of NADW during stage 11 may be causally linked by the NADW formation process/warm water return route (Gordon, 1986, doi:10.1029/JC091iC04p05037). Time series analysis indicates that delta13C variations in the deep Southern Ocean occur at the same frequencies as the Earth's orbital variations and are coherent and in phase with delta18O. At most, 50% of the glacial-interglacial delta13C amplitude in the Southern Ocean is due changes in the contribution of NADW. The remainder is probably due to mean ocean delta13C changes.