65 resultados para Chaco Boreal (Paraguay and Bolivia)
Biometry, stable isotopes and stomach contents of A. glacialis and B. saida from Northeast Greenland
Resumo:
Two gadoid fishes, Arctogadus glacialis and Boreogadus saida, often coexist (i.e. sympatric) in the fjords and shelf areas of the Arctic seas, where they likely share the same food resources. Diet composition from stomach contents, i.e. frequency of occurrence (FO) and Schoener's index (SI), and stable isotope signatures (d13C and d15N) in muscle of these sympatric gadoids were examined from two fjords in NE Greenland-Tyrolerfjord (TF, ~74°N, sill present) and Dove Bugt (DB, ~76°N, open). Twenty-three prey taxa and categories were identified and both gadoids ate mostly crustaceans. The SI values of 0.64-0.70 indicated possible resource competition, whereas FO differed significantly. A. glacialis fed mainly on the mysid Mysis oculata and other benthic-associated prey, whereas B. saida ate the copepod Metridia longa and other pelagic prey. Both diet and stable isotopes strongly suggest a spatial segregation in feeding habitat, with A. glacialis being associated with the benthic food web (mean d13C = -20.81 per mil, d15N = 14.92 per mil) and B. saida with the pelagic food web (mean d13C = -21.25 per mil, d15N = 13.64 per mil). The dietary differences and isotopic signals were highly significant in the secluded TF and less clear in the open DB, where prey and predators may be readily advected from adjacent areas with other trophic conditions. This is the first study on the trophic position of A. glacialis inferred from analyses of stable isotopes. The subtle interaction between the Arctic gadoids should be carefully monitored in the light of ocean warming and ongoing invasions of boreal fishes into the Arctic seas.
Resumo:
We present sea surface, upper thermocline, and benthic d18O data, as well as temperature and paleoproductivity proxy data, from the International Marine Global Change Study Program (IMAGES) Core MD06-3067 (6°31'N, 126°30'E, 1575 m water depth), located in the western equatorial Pacific Ocean within the flow path of the Mindanao Current. Our records reveal considerable glacial-interglacial and suborbital variability in the Mindanao Dome upwelling over the last 160 kyr. Dome activity generally intensified during glacial intervals resulting in cooler thermocline waters, whereas it substantially declined during interglacials, in particular in the early Holocene and early marine oxygen isotope stage (MIS) 5e, when upwelling waters did not reach the thermocline. During MIS 3 and MIS 2, enhanced surface productivity together with remarkably low SST and low upper ocean thermal contrast provide evidence for episodic glacial upwelling to the surface, whereas transient surface warming marks periodic collapses of the Mindanao Dome upwelling during Heinrich events. We attribute the high variability during MIS 3 and MIS 2 to changes in the El Niño Southern Oscillation state that affected boreal winter monsoonal winds and upper ocean circulation. Glacial upwelling intensified when a strong cyclonic gyre became established, whereas El Niño-like conditions during Heinrich events tended to suppress the cyclonic circulation, reducing Ekman transport. Thus, our findings demonstrate that variations in the Mindanao Dome upwelling are closely linked to the position and intensity of the tropical convection and also reflect far-field influences from the high latitudes.
Resumo:
Calculated and measured estimations of biomass of small (<3 mm), large (3-30 mm), and total zooplankton were verified (compared). These integral parameters of epipelagic communities were estimated by two methods. We used previously obtained regression equations, which correlate these parameters with water transparency. Measured values of aforesaid parameters were compared with their mean values in waters of different productivity estimated from NASA satellite maps. We compared data collected at fifteen stations in September-December in regions of different productivity in the North Atlantic. In warm regions (to the south of 40°N) measured and calculated values coincide well. In boreal regions in autumn bulk of mesozooplankton descends to deep layers due to seasonal migrations; hence correlation between measured and calculated values is disrupted. It is evident that correlation between water transparency and mesozooplankton biomass (integral index of water productivity) obtained before should be corrected for seasonal variations.
Resumo:
Reliable information of past vegetation changes are important to project future changes, especially for areas undergoing rapid transitioning such as the boreal treeline. The application of detailed sedDNA records has the potential to enhance our understanding of vegetation changes gained mainly from pollen studies of lake sediments. This study investigates sedDNA and pollen records from 31 lakes along a gradient of increasing larch forest cover in northern Siberia (Taymyr Peninsula) and compares them with vegetation field surveys within the lake's catchment. With respect to vegetation richness, sedDNA recorded 114 taxa, about half of them to species level, while pollen analyses identified 43 pollen taxa. Both approaches exceed the 31 taxa revealed by vegetation field surveys of 400 m**2 plots. From north to south, Larix percentages increase, as is consistently recorded by all three methods. Furthermore, tundra sites are separated from forested sites in the plots of the principal component analyses. Comparison of ordination results by Procrustes and Protest analyses yields a significant fit among all compared pairs of records. Despite the overall comparability of sedDNA and pollen analyses certain idiosyncrasies in the compositional signal are observed, such as high percentages of Alnus and Betula in all pollen spectra and high percentages of Salix in all sedDNA spectra. In conclusion, our results from the treeline show that sedDNA analyses perform better than pollen in recording site-specific richness (i.e. presence/absence of certain vegetation taxa in the direct vicinity of the lake) and perform as good as pollen in tracing regional vegetation composition.
Resumo:
A high-resolution study of palaeoenvironmental changes through the late Younger Dryas and early Holocene in the Skagerrak, the eastern North Atlantic, is based on multi-proxy analyses of core MD99-2286 combined with palaeo-water depth modelling for the area. The late Younger Dryas was characterized by a cold ice-distal benthic foraminiferal fauna. After the transition to the Preboreal (c. 11 650 cal. a BP) this fauna was replaced by a Cassidulina neoteretis dominated fauna, indicating the influence of chilled Atlantic Water at the sea floor. Persisting relatively cold bottom-water conditions until c. 10 300 cal. a BP are presumably a result of an outflow of glacial meltwater from the Baltic area across south-central Sweden, which develops a strong stratification of the water column at MD99-2286. A short-term peak in the C/N ratio at c. 10 200 cal. a BP is suggested to indicate input of terrestrial material, which may represent the drainage of an ice-dammed lake in southern Norway, the Glomma event. After the last drainage route across south-central Sweden closed, c. 10 300 cal. a BP, the meltwater influence diminished, and the Skagerrak resembled a fjord with stable inflow of waters from the North Atlantic through the Norwegian Channel and a gradual increase in boreal species. Full interglacial conditions were established at the sea floor from c. 9250 cal. a BP. Subsequent warm stable conditions were interrupted by a short-term cooling around 8300-8200 cal. a BP, representing the 8.2 ka event.