65 resultados para CRYOGENIC PRESERVATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid carbon input into the ocean-atmosphere system caused a dramatic shoaling of the lysocline during the Paleocene-Eocene thermal maximum (PETM), a transient (~170 kyr) global warming event that occurred roughly 55 Ma. Carbon cycle models invoking an accelerated carbonate-silicate feedback mechanism to neutralize ocean acidification predict that the lysocline would subsequently deepen to depths below its original position as the marine carbonate system recovered from such a perturbation. To test this hypothesis, records of carbonate sedimentation and preservation for PETM sections in the Weddell Sea (ODP Site 690) and along the Walvis Ridge depth transect (ODP Sites 1262, 1263, and 1266) were assembled within the context of a unified chronostratigraphy. The meridional gradient of undersaturation delimited by these records shows that dissolution was more severe in the subtropical South Atlantic than in the Weddell Sea during the PETM, a spatiotemporal pattern inconsistent with the view that Atlantic overturning circulation underwent a transient reversal. Deepening of the lysocline following its initial ascent is signaled by increases in %CaCO3 and coarse-fraction content at all sites. Carbonate preservation during the recovery period is appreciably better than that seen prior to carbon input with carbonate sedimentation becoming remarkably uniform over a broad spectrum of geographic and bathymetric settings. These congruent patterns of carbonate sedimentation confirm that the lysocline was suppressed below the depth it occupied prior to carbon input, and are consistent with the view that an accelerated carbonate-silicate geochemical cycle played an important role in arresting PETM conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In ocean margin sediments both marine and terrestrial organic matter (OM) are buried but the factors governing their relative preservation and degradation are not well understood. In this study, we analysed the degree of preservation of marine isoprenoidal and soil-derived branched glycerol dialkyl glycerol tetraethers (GDGTs) upon long-term oxygen exposure in OM-rich turbidites from the Madeira Abyssal Plain by analyzing GDGT concentrations across oxidation fronts. Relative to the anoxic part of the turbidites ca. 7-20% of the soil-derived branched GDGTs were preserved in the oxidized part while only 0.2-3% of the marine isoprenoid GDGT crenarchaeol was preserved. Due to these different preservation factors the Branched Isoprenoid Tetraether (BIT) index, a ratio between crenarchaeol and the major branched GDGTs that is used as a tracer for soil-derived organic matter, substantially increases from 0.02 to 0.4. Split Flow Thin Cell (SPLITT) separation of turbidite sediments showed that the enhanced preservation of soil-derived carbon was a general phenomenon across the fine particle size ranges (<38 ?m). Calculations reveal that, despite their relatively similar chemical structures, degradation rates of crenarchaeol are 2-fold higher than those of soil-derived branched GDGTs, suggesting preferential soil OM preservation possibly due to matrix protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pliocene-Pleistocene history of CaCO3 preservation in the central equatorial Pacific is reconstructed from a suite of deep-sea cores and is compared to fluctuations in global ice volume inferred from delta18O records. The results are highlighted by: (1) a strong covariation between CaCO3 preservation and ice volume over 104 to 106 year time scales; (2) a long-term increase in ice volume and CaCO3 preservation since 3.9 Ma demonstrated by a deepening of the lysocline and the carbonate critical depth; (3) a dramatic shift to greater CaCO3 preservation at 2.9 Ma; (4) distinctive ice-volume growth and CaCO3 preservation events at 2.4 Ma, which are associated with the significant intensification of northern hemisphere glaciation; (5) a mid-Pleistocene transition to 100-kyr cyclicity in both CaCO3 preservation and ice volume; and (6) a 600-kyr Brunhes dissolution cycle superimposed on the late Pleistocene glacial/interglacial 100-kyr cycles. CaCO3 preservation primarily reflects the carbonate chemistry of abyssal waters and is controlled by long-term (106 year) and short-term (104 to 105 year) biogeochemical cycling and by distinct paleoclimatic events. We attribute the long-term increase in CaCO3 preservation primarily to a fractionation of CaCO3 deposition from continental shelf to ocean basin, and secondarily to a gradual rise in the riverine and glaciofluvial flux of Ca++. On shorter time scales, the fluctuations in CaCO3 preservation slightly lag ice volume fluctuations and are attributed to climatically induced changes in the circulation and chemistry of Pacific deep water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oceanic carbon cycle mainly comprises the production and dissolution/ preservation of carbonate particles in the water column or within the sediment. Carbon dioxide is one of the major controlling factors for the production and dissolution of carbonate. There is a steady exchange between the ocean and atmosphere in order to achieve an equilibrium of CO2; an anthropogenic rise of CO2 in the atmosphere would therefore also increase the amount of CO2 in the ocean. The increased amount of CO2 in the ocean, due to increasing CO2-emissions into the atmosphere since the industrial revolution, has been interpreted as "ocean acidification" (Caldeira and Wickett, 2003). Its alarming effects, such as dissolution and reduced CaCO3 formation, on reefs and other carbonate shell producing organisms form the topic of current discussions (Kolbert, 2006). Decreasing temperatures and increasing pressure and CO2 enhance the dissolution of carbonate particles at the sediment-water interface in the deep sea. Moreover, dissolution processes are dependent of the saturation state of the surrounding water with respect to calcite or aragonite. Significantly increased dissolution has been observed below the aragonite or calcite chemical lysocline; below the aragonite compensation depth (ACD), or calcite compensation depth (CCD), all aragonite or calcite particles, respectively, are dissolved. Aragonite, which is more prone to dissolution than calcite, features a shallower lysocline and compensation depth than calcite. In the 1980's it was suggested that significant dissolution also occurs in the water column or at the sediment-water interface above the lysocline. Unknown quantities of carbonate produced at the sea surface, would be dissolved due to this process. This would affect the calculation of the carbonate production and the entire carbonate budget of the world's ocean. Following this assumption, a number of studies have been carried out to monitor supralysoclinal dissolution at various locations: at Ceara Rise in the western equatorial Atlantic (Martin and Sayles, 1996), in the Arabian Sea (Milliman et al., 1999), in the equatorial Indian Ocean (Peterson and Prell, 1985; Schulte and Bard, 2003), and in the equatorial Pacific (Kimoto et al., 2003). Despite the evidence for supralysoclinal dissolution in some areas of the world's ocean, the question still exists whether dissolution occurs above the lysocline in the entire ocean. The first part of this thesis seeks answers to this question, based on the global budget model of Milliman et al. (1999). As study area the Bahamas and Florida Straits are most suitable because of the high production of carbonate, and because there the depth of the lysocline is the deepest worldwide. To monitor the occurrence of supralysoclinal dissolution, the preservation of aragonitic pteropod shells was determined, using the Limacina inflata Dissolution Index (LDX; Gerhardt and Henrich, 2001). Analyses of the grain-size distribution, the mineralogy, and the foraminifera assemblage revealed further aspects concerning the preservation state of the sediment. All samples located at the Bahamian platform are well preserved. In contrast, the samples from the Florida Straits show dissolution in 800 to 1000 m and below 1500 m water depth. Degradation of organic material and the subsequent release of CO2 probably causes supralysoclinal dissolution. A northward extension of the corrosive Antarctic Intermediate Water (AAIW) flows through the Caribbean Sea into the Gulf of Mexico and might enhance dissolution processes at around 1000 m water depth. The second part of this study deals with the preservation of Pliocene to Holocene carbonate sediments from both the windward and leeward basins adjacent to Great Bahama Bank (Ocean Drilling Program Sites 632, 633, and 1006). Detailed census counts of the sand fraction (250-500 µm) show the general composition of the coarse grained sediment. Further methods used to examine the preservation state of carbonates include the amount of organic carbon and various dissolution indices, such as the LDX and the Fragmentation Index. Carbonate concretions (nodules) have been observed in the sand fraction. They are similar to the concretions or aggregates previously mentioned by Mullins et al. (1980a) and Droxler et al. (1988a), respectively. Nonetheless, a detailed study of such grains has not been made to date, although they form an important part of periplatform sediments. Stable isotopemeasurements of the nodules' matrix confirm previous suggestions that the nodules have formed in situ as a result of early diagenetic processes (Mullins et al., 1980a). The two cores, which are located in Exuma Sound (Sites 632 and 633), at the eastern margin of Great Bahama Bank (GBB), show an increasing amount of nodules with increasing core depth. In Pliocene sediments, the amount of nodules might rise up to 100%. In contrast, nodules only occur within glacial stages in the deeper part of the studied core interval (between 30 and 70 mbsf) at Site 1006 on the western margin of GBB. Above this level the sediment is constantly being flushed by bottom water, that might also contain corrosive AAIW, which would hinder cementation. Fine carbonate particles (<63 µm) form the matrix of the nodules and do therefore not contribute to the fine fraction. At the same time, the amount of the coarse fraction (>63 µm) increases due to the nodule formation. The formation of nodules might therefore significantly alter the grain-size distribution of the sediment. A direct comparison of the amount of nodules with the grain-size distribution shows that core intervals with high amounts of nodules are indeed coarser than the intervals with low amounts of nodules. On the other hand, an initially coarser sediment might facilitate the formation of nodules, as a high porosity and permeability enhances early diagenetic processes (Westphal et al., 1999). This suggestion was also confirmed: the glacial intervals at Site 1006 are interpreted to have already been rather coarse prior to the formation of nodules. This assumption is based on the grain-size distribution in the upper part of the core, which is not yet affected by diagenesis, but also shows coarser sediment during the glacial stages. As expected, the coarser, glacial deposits in the lower part of the core show the highest amounts of nodules. The same effect was observed at Site 632, where turbidites cause distinct coarse layers and reveal higher amounts of nodules than non-turbiditic sequences. Site 633 shows a different pattern: both the amount of nodules and the coarseness of the sediment steadily increase with increasing core depth. Based on these sedimentological findings, the following model has been developed: a grain-size pattern characterised by prominent coarse peaks (as observed at Sites 632 and 1006) is barely altered. The greatest coarsening effect due to the nodule formation will occur in those layers, which have initially been coarser than the adjacent sediment intervals. In this case, the overall trend of the grain-size pattern before and after formation of the nodules is similar to each other. Although the sediment is altered due to diagenetic processes, grain size could be used as a proxy for e.g. changes in the bottom-water current. The other case described in the model is based on a consistent initial grain-size distribution, as observed at Site 633. In this case, the nodule reflects the increasing diagenetic alteration with increasing core depth rather than the initial grain-size pattern. In the latter scenario, the overall grain-size trend is significantly changed which makes grain size unreliable as a proxy for any palaeoenvironmental changes. The results of this study contribute to the understanding of general sedimentation processes in the periplatform realm: the preservation state of surface samples shows the influence of supralysoclinal dissolution due to the degradation of organic matter and due to the presence of corrosive water masses; the composition of the sand fraction shows the alteration of the carbonate sediment due to early diagenetic processes. However, open questions are how and when the alteration processes occur and how geochemical parameters, such as the rise in alkalinity or the amount of strontium, are linked to them. These geochemical parameters might reveal more information about the depth in the sediment column, where dissolution and cementation processes occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic microparticle and nanoparticle inventories of marine sediments from equatorial Atlantic sites were investigated by scanning and transmission electron microscopy to classify all present detrital and authigenic magnetic mineral species and to investigate their regional distribution, origin, transport, and preservation. This information is used to establish source-to-sink relations and to constrain environmental magnetic proxy interpretations for this area. Magnetic extracts were prepared from sediments of three supralysoclinal open ocean gravity cores located at the Ceará Rise (GeoB 1523-1; 3°49.9'N/41°37.3'W), the Mid-Atlantic Ridge (GeoB 4313-2; 4°02.8'N/33°26.3'W), and the Sierra Leone Rise (GeoB 2910-1; 4°50.7'N/21°03.2'W). Sediments from two depths corresponding to marine isotope stages 4 and 5.5 were processed. This selection represents glacial and interglacial conditions of sedimentation for the western, central, and eastern equatorial Atlantic and avoids interferences from subsurface and anoxic processes. Crystallographic, elemental, morphological, and granulometric data of more than 2000 magnetic particles were collected by scanning and transmission electron microscopy. On basis of these properties, nine particle classes could be defined: detrital magnetite, titanomagnetite (fragmental and euhedral), titanomagnetite-hemoilmentite intergrowths, silicates with magnetic inclusions, microcrystalline hematite, magnetite spherules, bacterial magnetite, goethite needles, and nanoparticle clusters. Each class can be associated with fluvial, eolian, subaeric, and submarine volcanic, biogenic, or chemogenic sources. Large-scale sedimentation patterns are delineated as well: detrital magnetite is typical of Amazon discharge, fragmental titanomagnetite is a submarine weathering product of mid-ocean ridge basalts, and titanomagnetite-hemoilmenite intergrowths are common magnetic particles in West African dust. This clear regionalization underlines that magnetic petrology is an excellent indicator of source-to-sink relations. Hematite encrustations, magnetic spherules, and nanoparticle clusters were found at all investigated sites, while bacterial magnetite and authigenic hematite were only detected at the more oxic western site. At the eastern site, surface pits and crevices were seen on the crystal faces indicating subtle early diagenetic reductive dissolution. It was observed that paleoclimatic signatures of magnetogranulometric parameters such as the ratio of anhysteretic and isothermal remanent magnetizations can be formed either by mixing of multiple sources with separate, relatively narrow grain size ranges (western site) or by variable sorting of a single source with a broad grain size distribution (eastern site). Hematite, goethite, and possibly ferrihydrite nanoparticles occur in all sediment cores studied and have either high-coercive or superparamagnetic properties depending on their partly ultrafine grain sizes. These two magnetic fractions are generally discussed as separate fractions, but we suggest that they could actually be genetically linked.