83 resultados para COARSE-GRAINED SIMULATIONS
Resumo:
Modern carbonate sedimentation takes place on the northern Mauritanian shelf (20°N), where typical tropical components (e.g. hermatypic reefs, calcareous green algae) are absent. Such deposits are reminiscent of extratropical sediment in the geological record. The tropical open shelf of Mauritania is influenced by large siliciclastic dust input and upwelling, highly fertilizing the ocean, as well as strongly limiting the light penetration. In this context, temperature does not appear to be the steering factor of carbonate production. This thesis describes the depositional system of the Golfe d'Arguin off Mauritania and focuses on environmental conditions that control the depositional pattern, in particular carbonate production. The description of this modern analogue provides a tool for paleoenvironmental interpretation of ancient counterparts. The Golfe d'Arguin is a broad shallow shelf comprising extensive shoals (<10 m water depth; i.e. the Banc d'Arguin) on the inner shelf where waters warm up. The sediments collected in water depths between 4 and 600 m are characterized by mixed carbonate and siliciclastic (dust) deposits. They vary from clean coarse-grained, almost pure carbonate loose sediments to siliciclastic-dominated fine-grained sediments. The carbonate content and sediment grain size show a north-south decreasing pattern through the Golfe d'Arguin and are controlled by the hydraulic regime influenced by wind-driven surface currents, swell, and tidal currents. The carbonate grain association is heterozoan. Components include abundant molluscs, foraminifers, and worm tubes, as well as barnacles and echinoderms, elements that are also abundant in extratropical sediments. The spatial distribution of the sedimentary facies of the Golfe d'Arguin does not display a depth zonation but rather a mosaic (i.e. patchy distribution). The depth and climatic signatures of the different sedimentary facies are determined by taxonomic and ecological investigations of the carbonate-secreting biota (molluscs and foraminifers). While certain planktonic foraminifers and molluscs represent upwelling elements, other components (e.g. mollusc and benthic foraminifer taxa) demonstrate the tropical origin of the sediment. The nutrient-rich (and thus also low light-penetration) conditions are reflected in the fact that symbiotic and photosynthetic carbonate-producing organisms (e.g. hermatypic corals) are absent. The Mauritanian deposits represent an environment that is rare in the modern world but might have been more common in the geological past when global temperatures were higher. Taxonomic and ecological studies allow for distinguishing carbonate sediments formed under either tropical high-nutrient or extratropical conditions, thus improving paleoclimate reconstruction.
Resumo:
Mineralogical and granulometric properties of glacial-marine surface sediments of the Weddell Sea and adjoining areas were studied in order to decipher spatial variations of provenance and transport paths of terrigenous detritus from Antarctic sources. The silt fraction shows marked spatial differences in quartz contents. In the sand fractions heavy-mineral assemblages display low mineralogical maturity and are dominated by garnet, green hornblende, and various types of clinopyroxene. Cluster analysis yields distinct heavy-mineral assemblages, which can be attributed to specific source rocks of the Antarctic hinterland. The configuration of modern mineralogical provinces in the near-shore regions reflects the geological variety of the adjacent hinterland. In the distal parts of the study area, sand-sized heavy minerals are good tracers of ice-rafting. Granulometric characteristics and the distribution of heavy-mineral provinces reflect maxima of relative and absolute accumulation of ice-rafted detritus in accordance with major iceberg drift tracks in the course of the Weddell Gyre. Fine-grained and coarse-grained sediment fractions may have different origins. In the central Weddell Sea, coarse ice-rafted detritus basically derives from East Antarctic sources, while the fine-fraction is discharged from weak permanent bottom currents and/or episodic turbidity currents and shows affinities to southern Weddell Sea sources. Winnowing of quartz-rich sediments through intense bottom water formation in the southern Weddell Sea provides muddy suspensions enriched in quartz. The influence of quartz-rich suspensions moving within the Weddell Gyre contour current can be traced as far as the continental slope in the northwestern Weddell Sea. In general, the focusing of mud by currents significantly exceeds the relative and absolute contribution of ice-rafted detritus beyond the shelves of the study area.
Resumo:
The processes of formation of iron-manganese nodules and crusts have been studied on an example of the Eningi-Lampi lake, Central Karelia, where the relationships between the source of the ore, sedimentary materials and areas of their accumulation prove relatively simple and apparent. Nodules and crusts are composed mostly by birnessite, amorphous hydrous ferric oxides and hydro-goethite. They occur, as a rule, on the surface of relatively coarse-grained sediments, at the ground-water interface. Considerably in a lesser extent are found the nodules in the upper part (0ó5 cm) of the red-brown flooded watery mud covering dark-green, black muds. The nucleus of nodules, or the basis of crusts of iron-manganese hydroxides are various, frequently altered, fragments of rocks, sometimes pieces of wood. Distribution of Mn and Fe in sediments and waters of the lake is considered. It is shown that the Mn/Fe ratio decreases considerably in waters, sediments and nodules of the lake while moving off a distance from the source. The main role in the process of formation of iron-manganese nodules belongs to the selective chemosorption interaction (with auto-catalytic oxidation) of component-bearing solutions with active surfaces.
Resumo:
Fine-grained clay subfractions (SFs) with particle size of <0.1, 0.1-0.2, 0.2-0.3, 0.3-0.6, 0.6-2.0, and 2-5 µm separated from claystone of Upper Precambrian Pumanskaya and Poropelonskaya formations on the Srednii Peninsula were studied by transmission electron microscopy, X-ray diffraction, and Rb-Sr methods. All subfractions consist of low-temperature illite and chlorite, and contribution of chlorite decreases with diminishing particle size. The crystallinity index and I002/I001 ratio increase from coarse- to fine-grained SFs. Leaching by ammonium acetate solution and Rb-Sr systematics in combination with mineralogical and morphological data indicate that illite in Upper Proterozoic claystone from the Srednii Peninsula formed during three time intervals: 810-830, 610-620, and about 570 Ma ago. The first generation of this mineral with low Rb/Sr ratio dominates in coarse-grained SFs while the second and third generations with a high Rb/Sr ratio prevail in fine-grained SFs. All of three generations are known in Poropelon claystone, whereas Puman claystone contains only illite of the first and second generations. Geological processes responsible for multistage illite evolution in claystones are discussed.
Resumo:
The sandfraction of the sediment was analysed in five cores, taken from 65 m water depth in the central and eastern part of the Persian Gulf. The holocene marls are underlayn by aragonite muds, which are probably 10-11,000 years old. 1. The cores could be subdivided into coarse grained and fine grained layers. Sorting is demonstrated by the following criteria: With increasing median values of the sandfraction - the fine grained fraction decreases within each core; - the median of each biogenic component, benthonic as well as planktonic, increases; - the median of the relict sediment, which in core 1179 was carried upward into the marl by bioturbation, increases; - the percentages of pelecypods, gastropods, decapods and serpulid worms in the sandfraction increase, the percentages of foraminifera and ostracods decrease; - the ratios of pelecypods to foraminifera and of decapods to ostracods increase; - the ratios of benthonic molluscs to planktonic molluscs (pteropods) and of benthonic foraminifera to planktonic foraminifera increase (except in core 1056 and 1179); - the ratio of planktonic molluscs (pteropods) to planktonic foraminifera increases; - the globigerinas without orbulinas increase, the orbulinas decrease in core 1056. Different settling velocities of these biogenic particles help in better understanding the results : the settling velocities, hence the equivalent hydrodynamic diameters, of orbulinas are smaller than those of other globigerinas, those of planktonic foraminifera are smaller than those of planktonic molluscs, those of planktonic molluscs are smaller than those of benthonic molluscs, those of pelecypods are smaller than those of gastropods. Bioturbation could not entirely distroy this "grain-size-stratification". Sorting has been stronger in the coarse layers than in the finer ones. As a cause variations in the supply of terrigenous material at constant strength of tidal currents is suggested. When much terrigenous material is supplied (large contents of fine grained fraction) the sedimentation rates are high: the respective sediment surface is soon covered and removed from the influence of tidal currents. When, however, the supply of terrigenous material is small, more sandy material is taken away in all locations within the influence of terrigenous supply. Thus the biogenic particles in the sediment do not only reflect the organic production, but also the influence of currents. 2. There is no parameter present in all cores that is independently variable from grain size and can be used for stratigraphic correlation. The two cores from the Strait of Hormus were correlated by their sequences of coarse and fine grained layers. 3. The sedimentation rates of terrigenous material, of total planktonic and benthonic organisms and of molluscs, foraminifera, echinoids and ophiuroids are shown in table 1 (total sediment 6.3-75.5 cm/1000 yr, biogenic carbonate 1.9-3.6 cm/1000 yr). The sedimentation rates of benthonic organisms are nearly the same in the cores of the Strait of Hormus, whereas near the Central Swell they are smaller. In the upper parts of the two cores of the Strait of Hormus sedimentation rates are higher than in the deeper parts, where higher median values point to stronger reworking. 4. The sequence of coarse and fine grained intervals in the two cores of the Hormus Strait, attributed to variations in climate, as well as the increase of terrigenous supply from the deeper to the upper parts of the cores, agrees with the descriptions in the literature of the post Pleistocene climate as becoming more humid. The rise of sea level is sedimentologically not measurable in the marly sediments - except perhaps for the higher content of echinoids in the lower part of core 1056. These may be attributed to the influence of a migrating wave-base. 5. The late Pleistocene aragonite mud is very fine grained (> 50%< 2 p) and poor in fossils (0.5-1.8%) biogenic particles of total sediment. The sand fraction consists almost entirely of white clumps, c. 0.1 mm in diameter (1177), composed of aragonite needles and of detrital minerals with the same size (1201). The argonite mud was probably not formed in situ, because the water depth at time of formation was at most 35 m at least 12 m. The sorting of the sediment (predominance of the fine grained sand), the absence of larger biogenic components and of pellets, c. 0.2-0.5 mm in diameter, which are typical for Recent and Pleistocene locations of aragonite formation, as well as the sedimentological conditions near the sampling points, indicate rather a transport of aragonite mud from an area of formation in very shallow waters. Sorting as well as lenticular fabric in core 1201 point to sedimentation within the influence of currents. During alternating sedimentation - and reworking processes the aragonitic matrix was separated from the silt - and sand-sized minerals. The lenses grade into touches because of bioturbation. 6. In core 1056 D2 from Hormus Bay the percentages of organic carbon, total nitrogen and total carbonate were determined. With increasing amounts of smaller grain sizes the content of organic matter increases, whereas the amount of carbonate decreases. The amounts of organic carbon and of nitrogen decrease with increasing depth, probably due to early-diagenetic decomposition processes. Most of the total nitrogen is of organic origin, only about 10% may well be inorganically fixed as ammonium-nitrogen. In the upper part of the core the C/N-ratio increases with increasing depth. This may be connected with a stronger decomposition of nitrogen-containing organic compounds. The general decrease of the C/N-ratios in the lower part of the core may be explained by the relative increase of inorganically fixed ammonium-nitrogen with decreasing content of organic matter.
Resumo:
To assess the regional effects of glaciation on sedimentation in the Atlantic Ocean we compare sediment types, distributions, and rates between Recent (core top) and last glacial maximum (LGM: ~18,000 years B.P.) stratigraphic levels. Based upon smear slides and carbonate analyses in 178 cores we find that glacial age carbonate content is generally lower than Recent. During both the Recent and LGM, carbonate content shows an east/west asymmetry with western basins exhibiting lower carbonate values. Input of ice-rafted detritus into the North Atlantic during LGM time interrupts this topographic control on carbonate distribution considerably farther south than at present; in the South Atlantic this effect is minor. Comparison of LGM and Recent sediment distributions indicates that the LGM seafloor was dominated by biogenic oozes, calcareous clays, and clays, while the Recent is dominated by biogenic oozes and marls. Coarse-grained detritus is much more prevalent in LGM sediments, derived not only from glacial input but also from fluvial and aeolian sources. Sedimentation rates, calculated from LGM to Recent sediment thickness in cores, are <4 cm/1000 yr for most of the ocean. Higher rates are typical of the continental margin off the Amazon River, the North American Basin, and a small region off west equatorial Africa.
Resumo:
Terrigenous sediment supply, marine transport, and depositional processes along tectonically active margins are key to decoding turbidite successions as potential archives of climatic and seismic forcings. Sequence stratigraphic models predict coarse-grained sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine siliciclastic deposition during transgressions and highstands has been attributed to sustained connectivity between terrigenous sources and marine sinks facilitated by narrow shelves. To decipher the controls on Holocene highstand turbidite deposition, we analyzed 12 sediment cores from spatially discrete, coeval turbidite systems along the Chile margin (29° - 40°S) with changing climatic and geomorphic characteristics but uniform changes in sea level. Sediment cores from intraslope basins in north-central Chile (29° - 33°S) offshore a narrow to absent shelf record a shut-off of turbidite deposition during the Holocene due to postglacial aridification. In contrast, core sites in south-central Chile (36° - 40°S) offshore a wide shelf record frequent turbidite deposition during highstand conditions. Two core sites are linked to the Biobío river-canyon system and receive sediment directly from the river mouth. However, intraslope basins are not connected via canyons to fluvial systems but yield even higher turbidite frequencies. High sediment supply combined with a wide shelf and an undercurrent moving sediment toward the shelf edge appear to control Holocene turbidite sedimentation and distribution. Shelf undercurrents may play an important role in lateral sediment transport and supply to the deep sea and need to be accounted for in sediment-mass balances.
Resumo:
Bioturbation in marine sediments has basically two aspects of interest for palaeo-environmental studies. First, the traces left by the burrowing organisms reflect the prevailing environmental conditions at the seafloor and thus can be used to reconstruct the ecologic and palaeoceanographic situation. Traces have the advantage over other proxies of practically always being preserved in situ. Secondly, for high- resolution stratigraphy, bioturbation is a nuisance due to the stirring and mixing processes that destroy the stratigraphic record. In order to evaluate the applicability of biogenic traces as palaeoenvironmental indicators, a number of gravity cores from the Portuguese continental slope, covering the period from the last glacial to the present were investigated through X-ray radiographs. In addition, physical and chemical parameters were determined to define the environmental niche in each core interval. A number of traces could be recognized, the most important being: Thalassinoides, Planolites, Zoophycos, Chondrites, Scolicia, Palaeophycus, Phycosiphon and the generally pyritized traces Trichichnus and Mycellia. The shifts between the different ichnofabrics agree strikingly well with the variations in ocean circulation caused by the changing climate. On the upper and middle slope, variations in current intensity and oxygenation of the Mediterranean Outflow Water were responsible for shifts in the ichnofabric. Larger traces such as Planolites and Thalassinoides dominated in coarse, well oxygenated intervals, while small traces such as Chondrites and Trichichnus dominated in fine grained, poorly oxygenated intervals. In contrast, on the lower slope where calm steady sedimentation conditions prevail, changes in sedimentation rate and nutrient flux have controlled variations in the distribution of larger traces such as Planolites, Thalassinoides, and Palaeophycus. Additionally, distinct layers of abundant Chondrites correspond to Heinrich events 1, 2, and 4, and are interpreted as a response to incursions of nutrient rich, oxygen depleted Antarctic waters during phases of reduced thermohaline circulation. The results clearly show that not one single factor but a combination of several factors is necessary to explain the changes in ichnofabric. Furthermore, large variations in the extent and type of bioturbation and tiering between different settings clearly show that a more detailed knowledge of the factors governing bioturbation is necessary if we shall fully comprehend how proxy records are disturbed. A first attempt to automatize a part of the recognition and quantification of the ichnofabric was performed using the DIAna image analysis program on digitized X-ray radiographs. The results show that enhanced abundance of pyritized microburrows appears to be coupled to organic rich sediments deposited under dysoxic conditions. Coarse grained sediments inhibit the formation of pyritized burrows. However, the smallest changes in program settings controlling the grey scale threshold and the sensitivity resulted in large shifts in the number of detected burrows. Therefore, this method can only be considered to be semi-quantitative. Through AMS-^C dating of sample pairs from the Zoophycos spreiten and the surrounding host sediment, age reversals of up to 3,320 years could be demonstrated for the first time. The spreiten material is always several thousands of years younger than the surrounding host sediment. Together with detailed X-ray radiograph studies this shows that the trace maker collects the material on the seafloor, and then transports it downwards up to more than one meter in to the underlying sediment where it is deposited in distinct structures termed spreiten. This clearly shows that age reversals of several thousands of years can be expected whenever Zoophycos is unknowingly sampled. These results also render the hitherto proposed ethological models proposed for Zoophycos as largely implausible. Therefore, a combination of detritus feeding, short time caching, and hibernation possibly combined also with gardening, is suggested here as an explanation for this complicated burrow.
Resumo:
The oceanic carbon cycle mainly comprises the production and dissolution/ preservation of carbonate particles in the water column or within the sediment. Carbon dioxide is one of the major controlling factors for the production and dissolution of carbonate. There is a steady exchange between the ocean and atmosphere in order to achieve an equilibrium of CO2; an anthropogenic rise of CO2 in the atmosphere would therefore also increase the amount of CO2 in the ocean. The increased amount of CO2 in the ocean, due to increasing CO2-emissions into the atmosphere since the industrial revolution, has been interpreted as "ocean acidification" (Caldeira and Wickett, 2003). Its alarming effects, such as dissolution and reduced CaCO3 formation, on reefs and other carbonate shell producing organisms form the topic of current discussions (Kolbert, 2006). Decreasing temperatures and increasing pressure and CO2 enhance the dissolution of carbonate particles at the sediment-water interface in the deep sea. Moreover, dissolution processes are dependent of the saturation state of the surrounding water with respect to calcite or aragonite. Significantly increased dissolution has been observed below the aragonite or calcite chemical lysocline; below the aragonite compensation depth (ACD), or calcite compensation depth (CCD), all aragonite or calcite particles, respectively, are dissolved. Aragonite, which is more prone to dissolution than calcite, features a shallower lysocline and compensation depth than calcite. In the 1980's it was suggested that significant dissolution also occurs in the water column or at the sediment-water interface above the lysocline. Unknown quantities of carbonate produced at the sea surface, would be dissolved due to this process. This would affect the calculation of the carbonate production and the entire carbonate budget of the world's ocean. Following this assumption, a number of studies have been carried out to monitor supralysoclinal dissolution at various locations: at Ceara Rise in the western equatorial Atlantic (Martin and Sayles, 1996), in the Arabian Sea (Milliman et al., 1999), in the equatorial Indian Ocean (Peterson and Prell, 1985; Schulte and Bard, 2003), and in the equatorial Pacific (Kimoto et al., 2003). Despite the evidence for supralysoclinal dissolution in some areas of the world's ocean, the question still exists whether dissolution occurs above the lysocline in the entire ocean. The first part of this thesis seeks answers to this question, based on the global budget model of Milliman et al. (1999). As study area the Bahamas and Florida Straits are most suitable because of the high production of carbonate, and because there the depth of the lysocline is the deepest worldwide. To monitor the occurrence of supralysoclinal dissolution, the preservation of aragonitic pteropod shells was determined, using the Limacina inflata Dissolution Index (LDX; Gerhardt and Henrich, 2001). Analyses of the grain-size distribution, the mineralogy, and the foraminifera assemblage revealed further aspects concerning the preservation state of the sediment. All samples located at the Bahamian platform are well preserved. In contrast, the samples from the Florida Straits show dissolution in 800 to 1000 m and below 1500 m water depth. Degradation of organic material and the subsequent release of CO2 probably causes supralysoclinal dissolution. A northward extension of the corrosive Antarctic Intermediate Water (AAIW) flows through the Caribbean Sea into the Gulf of Mexico and might enhance dissolution processes at around 1000 m water depth. The second part of this study deals with the preservation of Pliocene to Holocene carbonate sediments from both the windward and leeward basins adjacent to Great Bahama Bank (Ocean Drilling Program Sites 632, 633, and 1006). Detailed census counts of the sand fraction (250-500 µm) show the general composition of the coarse grained sediment. Further methods used to examine the preservation state of carbonates include the amount of organic carbon and various dissolution indices, such as the LDX and the Fragmentation Index. Carbonate concretions (nodules) have been observed in the sand fraction. They are similar to the concretions or aggregates previously mentioned by Mullins et al. (1980a) and Droxler et al. (1988a), respectively. Nonetheless, a detailed study of such grains has not been made to date, although they form an important part of periplatform sediments. Stable isotopemeasurements of the nodules' matrix confirm previous suggestions that the nodules have formed in situ as a result of early diagenetic processes (Mullins et al., 1980a). The two cores, which are located in Exuma Sound (Sites 632 and 633), at the eastern margin of Great Bahama Bank (GBB), show an increasing amount of nodules with increasing core depth. In Pliocene sediments, the amount of nodules might rise up to 100%. In contrast, nodules only occur within glacial stages in the deeper part of the studied core interval (between 30 and 70 mbsf) at Site 1006 on the western margin of GBB. Above this level the sediment is constantly being flushed by bottom water, that might also contain corrosive AAIW, which would hinder cementation. Fine carbonate particles (<63 µm) form the matrix of the nodules and do therefore not contribute to the fine fraction. At the same time, the amount of the coarse fraction (>63 µm) increases due to the nodule formation. The formation of nodules might therefore significantly alter the grain-size distribution of the sediment. A direct comparison of the amount of nodules with the grain-size distribution shows that core intervals with high amounts of nodules are indeed coarser than the intervals with low amounts of nodules. On the other hand, an initially coarser sediment might facilitate the formation of nodules, as a high porosity and permeability enhances early diagenetic processes (Westphal et al., 1999). This suggestion was also confirmed: the glacial intervals at Site 1006 are interpreted to have already been rather coarse prior to the formation of nodules. This assumption is based on the grain-size distribution in the upper part of the core, which is not yet affected by diagenesis, but also shows coarser sediment during the glacial stages. As expected, the coarser, glacial deposits in the lower part of the core show the highest amounts of nodules. The same effect was observed at Site 632, where turbidites cause distinct coarse layers and reveal higher amounts of nodules than non-turbiditic sequences. Site 633 shows a different pattern: both the amount of nodules and the coarseness of the sediment steadily increase with increasing core depth. Based on these sedimentological findings, the following model has been developed: a grain-size pattern characterised by prominent coarse peaks (as observed at Sites 632 and 1006) is barely altered. The greatest coarsening effect due to the nodule formation will occur in those layers, which have initially been coarser than the adjacent sediment intervals. In this case, the overall trend of the grain-size pattern before and after formation of the nodules is similar to each other. Although the sediment is altered due to diagenetic processes, grain size could be used as a proxy for e.g. changes in the bottom-water current. The other case described in the model is based on a consistent initial grain-size distribution, as observed at Site 633. In this case, the nodule reflects the increasing diagenetic alteration with increasing core depth rather than the initial grain-size pattern. In the latter scenario, the overall grain-size trend is significantly changed which makes grain size unreliable as a proxy for any palaeoenvironmental changes. The results of this study contribute to the understanding of general sedimentation processes in the periplatform realm: the preservation state of surface samples shows the influence of supralysoclinal dissolution due to the degradation of organic matter and due to the presence of corrosive water masses; the composition of the sand fraction shows the alteration of the carbonate sediment due to early diagenetic processes. However, open questions are how and when the alteration processes occur and how geochemical parameters, such as the rise in alkalinity or the amount of strontium, are linked to them. These geochemical parameters might reveal more information about the depth in the sediment column, where dissolution and cementation processes occur.
Resumo:
Distribution of diatoms and planktonic and benthic foraminifers, as well as correlation of components of sandy grain size fraction were studied in the Quaternary sediment core LV28-42-5 (720 cm long) col¬lected on the southeastern slope (1045 m depth) of the Institute of Oceanology Rise, Sea of Okhotsk. This study allowed to reconstruct principle features of paleoceanographic evolution. In the course of penultimate and last continental glaciations (isotope stages 6 and 4-2) and during the later period of the last interglacial (substages 5.d-5.a) the following conditions were characteristic of this area: low temperatures of surface water, terrigenous sediment accumulation including coarse grained ice-rafted material, minimum bioproductivity and microfossil content in sediments, low sea level, reduced water exchange with the ocean, low position of old deep Pacific water. During the interglacial optimum (substage 5.e), as well as in the last deglaciation and Holocene (stage 1) water temperature and bioproductivity increased, sea level rose, and active surface water exchange between the Sea of Okhotsk and the Pacific Ocean and the Sea of Japan took place. This resulted in intensive inflow of the old deep Pacific water into the Sea of Okhotsk and elevation of its upper boundary by few hundred meters. During the later intervals of these warm periods a dichothermal structure of the upper water layer formed and diatom oozes accumulated.
Resumo:
A new generalized schematic map of distribution of recent sediments within Eurasian Arctic shelves is considered. The sediments have accumulated as a result of interaction of various factors and processes specific to high latitudes. They include input of terrigenous material by modern glaciers, ice transport, thermal abrasion, sedimentation controlled by many years of ice cover, and others. Characteristic regularity is marked over Arctic shelves: in seas with heavier ice cover, the most fine-grained deposits are distributed, they contain minimum amount of coarse-grained ice rafted debris; in seas with lighter ice cover mosaic distribution of various types of sediments is observed. Composition of surface sediments from the Arctic shelves corresponds to a relatively cool stage of the modern interglacial period. In the 21-st century a new warming is expected.
Resumo:
Data on hydrothermal activity in the Deryugin Basin (Sea of Okhotsk) are reviewed. Barites and carbonates found in sediment cores sampled at feet of hydrothermal mounds were subdivided into recycled and authigenic types. Recycled minerals were represented by crystals and aggregations of travertine-like barite and fragments of barite and carbonate tubes. Authigenic formations included: (1) carbonate nodules; (2) barite micronodules; (3) transparent colorless barite that generated numerous small nests and filled cavities in sediments; (4) yellow barite formed thin (0.5 mm) veins; and (5) white barite cemented small aggregations of coarse-grained sediments. A detailed examination of formation processes of authigenic minerals in the bottom sediment cores allowed to conclude that, there, hydrothermal activity is still going on today. This was confirmed by high methane concentration in near-bottom water above a field of hydrothermal barite minerals.
Resumo:
Available overwash records from coastal barrier systems document significant variability in North Atlantic hurricane activity during the late Holocene. The same climate forcings that may have controlled cyclone activity over this interval (e.g., the West African Monsoon, El Niño-Southern Oscillation (ENSO)) show abrupt changes around 6000 yrs B.P., but most coastal sedimentary records do not span this time period. Establishing longer records is essential for understanding mid-Holocene patterns of storminess and their climatic drivers, which will lead to better forecasting of how climate change over the next century may affect tropical cyclone frequency and intensity. Storms are thought to be an important mechanism for transporting coarse sediment from shallow carbonate platforms to the deep-sea, and bank-edge sediments may offer an unexplored archive of long-term hurricane activity. Here, we develop this new approach, reconstructing more than 7000 years of North Atlantic hurricane variability using coarse-grained deposits in sediment cores from the leeward margin of the Great Bahama Bank. High energy event layers within the resulting archive are (1) broadly correlated throughout an offbank transect of multi-cores, (2) closely matched with historic hurricane events, and (3) synchronous with previous intervals of heightened North Atlantic hurricane activity in overwash reconstructions from Puerto Rico and elsewhere in the Bahamas. Lower storm frequency prior to 4400 yrs B.P. in our records suggests that precession and increased NH summer insolation may have greatly limited hurricane potential intensity, outweighing weakened ENSO and a stronger West African Monsoon-factors thought to be favorable for hurricane development.
Grain size distribution of the lagoonal deposits within the South Malé Atoll, Maldives, Indian Ocean
Resumo:
Seismic and multibeam data, as well as sediment samples were acquired in the South Malé Atoll in the Maldives archipelago in 2011 to unravel the stratigraphy and facies of the lagoonal deposits. Multichannel seismic lines show that the sedimentary succession locally reaches a maximum thickness of 15-20 m above an unconformity interpreted as the emersion surface which developed during the last glacial sea-level lowstand. Such depocenters are located in current-protected areas flanking the reef rim of the atoll or in infillings of karst dolinas. Much of the 50 m deep sea floor in the lagoon interior is current swept, and has no or very minor sediment cover. Erosive current moats line drowned patch reefs, whereas other areas are characterized by nondeposition. Karst sink holes, blue holes and karst valleys occur throughout the lagoon, from its rim to its center. Lagoonal sediments are mostly carbonate rubble and coarse-grained carbonate sands with frequent large benthic foraminifers, Halimeda flakes, red algal nodules, mollusks, bioclasts, and intraclasts, some of them glauconitic, as well as very minor ooids. Finer-grained deposits locally are deposited in current-protected areas behind elongated faros, i.e., small atolls which are part of the rim of South Malé Atoll. The South Malé Atoll is a current-flushed atoll, where water and sediment export with the open sea is facilitated by the multiple passes dissecting the atoll rim. With an elevated reef rim and tower-like reefs in the atoll interior it is an example of a leaky bucket atoll which shares characteristics of incipiently drowned carbonate banks or drowning sequences as known from the geological record.
Resumo:
Aeolian and fluvial sediment transport to the Atlantic Ocean offshore Mauritania were reconstructed based on grain-size distributions of the carbonate-free silt fraction of three marine sediment records of Cap Timiris Canyon to monitor the climatic evolution of present-day arid north-western Africa. During the late Pleistocene, predominantly coarse-grained particles, which are interpreted as windborne dust, characterise glacial dry climate conditions with a low sea level and extended sand seas that reach onto the exposed continental shelf off Mauritania. Subsequent particle fining and the abrupt decrease in terrigenous supply are attributed to humid climate conditions and dune stabilisation on the adjacent African continent with the onset of the Holocene humid period. Indications for an ancient drainage system, which was discharging fluvial mud offshore via Cap Timiris Canyon, are provided by the finest end member for early to mid Holocene times. However, in comparison to the Senegal and Niger River further south, the river system connecting Cap Timiris Canyon with the Mauritanian hinterland was starved during the late Holocene and is non-discharging under present-day arid climate conditions.