74 resultados para CHYTRIDIOMYCETOUS GUT FUNGI
Resumo:
The gut contents and fatty acid composition of 49 fish belonging to five Antarctic demersal families (Nototheniidae, Macrouridae, Channichtyidae, Bathydraconidae and Artedidraconidae) sampled at two stations at the Southern Ocean shelf and deep sea (600 and 2150 m) were analysed in order to identify their main food resource by linking trophic biomarkers with the dietary items found in the fish guts. Main food items of most fish analysed were amphipod crustaceans (e.g. in 63% of Trematomus bernachii guts) and polychaetes (e.g. in 80% of Bathydraco sp. guts), but other food items including fish, other crustaceans and gastropods were also ingested. The most prominent fatty acids found were 20:5(n-3), 16:0, 22:6(n-3) and 18:1(n-9). The results of gut content and fatty acid analyses indicate that all fish except the Channichthyidae share similar food resources irrespective of their depth distribution, i.e. benthic amphipods and polychaetes. A difference of the dietary spectrum can be observed with ontogenetic phases rather than between species, as high values of typical calanoid copepod marker fatty acids as 22:1(n-11) indicate that younger (smaller) specimens include more zooplankton in their diet.
Resumo:
This paper describes inter-specific differences in the distribution of sediment in the gut compartments and in the enzyme and bacterial profiles along the gut of abyssal holothurian species - Oneirophanta mutabilis, Psychropotes longicauda and Pseudostichopus villosus sampled from a eutrophic site in the NE Atlantic at different times of the year. Proportions of sediments, relative to total gut contents, in the pharynx, oesophagus, anterior and posterior intestine differed significantly in all the inter-species comparisons, but not between inter-seasonal comparisons. Significant differences were also found between the relative proportions of sediments in both the rectum and cloaca of Psychropotes longicauda and Oneirophanta mutabilis. Nineteen enzymes were identified in either gut-tissue or gut-content samples of the holothurians studied. Concentrations of the enzymes in gut tissues and their contents were highly correlated. Greater concentrations of the enzymes were found in the gut tissues suggesting that they are the main source of the enzymes. The suites of enzymes recorded were broadly similar in each of the species sampled collected regardless of the time of the year, and they were similar to those described previously for shallow-water holothurians. Significant inter-specific differences in the gut tissue concentrations of some of the glycosidases suggest dietary differences. For example, Psychropotes longicauda and Pseudostichopus villosus contain higher levels of chitobiase than Oneirophanta mutabilis. There were no seasonal changes in bacterial activity profiles along the guts of O. mutabilis and Pseudostichopus villosus. In both these species bacterial activity and abundance declined between the pharynx/oesophagus and anterior intestine, but then increased along the gut and became greatest in the rectum/cloaca. Although the data sets were more limited for Psychropotes longicauda, bacterial activity increased from the anterior to the posterior intestine but then declined slightly to the rectum/cloaca. These changes in bacterial activity and densities probably reflect changes in the microbial environment along the guts of abyssal holothurians. Such changes suggest that there is potential for microbial breakdown of a broader range of substrates than could be otherwise be achieved by the holothurian itself. However, the present study found no evidence for sedimentary (microbial) sources of hydrolytic enzymes.
Resumo:
Quantitative data on lower marine Phycomycetes (fungi) found in the upwelling waters off the West African coast during cruises No. 13 (1968), 19 (1970), 36 (1975) and 44 (1977) of R.V. "Meteor" are reported. The distribution of the total fungi numbers is presented and, as far as possible, the evaluation of the material up to species level is given. Several provisionally named forms and groups of morphologically related, undescribed fungi are included. A correlation between the number of fungi in sediments and the water depth and distance from the coast line is postulated. There are typical distributions of the lower marine fungi in water bodies and sediments. Different values within replicates of the stations in different years show that there is a sequence in development of fungal populations induced by changes in the water bodies. Surface water far from the coast has low numbers of fungi; numbers increase to a maximum nearer to the coast. In the vicinity of the coast the values decrease. The numbers of fungi in the deep sediments are low below 1,200 m. However, there are isolated areas of higher fungal activities, indicated by some deeper grab samples. During two cruises, the "overlying water" in the grab samples was investigated. It was evident that the numbers of fungi lost by stirring of the sediment when the grab was brought up to the surface were small, relatively and absolutely. The seamount "Josephine Bank" has been investigated for the first time with respect to lower marine fungi; the populations are low in the sediments, but one sample of the surface water had a higher number than the water in the surroundings. In some hydrographic series there was a peculiar depth distribution. An increase occurred at a depth greater than 1,000 m. The results are discussed and some correlations to the aging of the fungal populations in the water masses are constructed.
Resumo:
During a winter expedition to the western Barents Sea in March 2003, benthic amphipods of the species Anonyx sarsi were observed directly below pack ice. Only males and juveniles [16.0-37.0 mm long, 16.2-120.8 mg dry mass (DM)] were collected. Guts contained macroalgal fibres, fish eggs and flesh from large carrion. Amphipods had very low levels of total lipids (2.7-17.2% DM). Analysis of lipid biomarkers showed that some of the specimens had preyed on pelagic copepods. Individual respiration rates ranged over 0.4-1.7 ml O2/day (mean: 1.2 ml, SD: 0.5 ml). Individual ammonia excretion rates varied between 7.8 µg and 49.3 µg N/day (mean: 30.7 µg, SD: 15.2 µg). The atomic O:N ratio ranged over 35 to 71 (mean: 55, SD: 14), indicating lipid-dominated metabolism. Mass-specific respiration ranged over 9.8-16.6 ml O2/day/g DM (mean: 13.1 ml, SD: 2.2 ml). The metabolic rates of A. sarsi were twice as high as those of the truly sympagic amphipod Gammarus wilkitzkii, which is better adapted to the under-ice habitat by its energy-saving attached lifestyle. It is concluded that males and juveniles of A. sarsi were actively searching for food in the water column and at the ice underside, but that the nutritional status of the amphipods in late Arctic winter was generally very poor.
Resumo:
The ecology of the lower marine fungi, namely the thraustochytrides, in the Fladen Ground area (FLEX box) and other parts of the North Sea was studied during 5 cruises in 1975 and 1976. The number of fungi/liter and the number of species showed seasonal fluctuations in the surface water samples from all the stations. A high number was found in September 1976 and a lower number in March 1976. These numbers, however, revealed no seasonal fluctuations in the underlying sediments. In both the surface waters and the sediments, a consistingly low number of fungi was recorded for certain stations and a high number of fungi for others, the reason for this beeing unknown. The sediments revealed a very high number of fungi/liter. Observations on the distribution of various species are presented. Certain species occured more frequently at some stations than at others; certain species occured more in the water column, e.g. Ulkenia minuta, and still others in the sediments, e.g. Thraustochytrium multirudimentale.