131 resultados para Branched-chain Amino Acids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of studies have shown that methanogens are active in the presence of sulfate under some conditions. This phenomenon is especially exemplified in carbonate sediments of the southern Australian continental margin. Three sites cored during Ocean Drilling Program (ODP) Leg 182 in the Great Australian Bight have high concentrations of microbially-generated methane and hydrogen sulfide throughout almost 500 m of sediments. In these cores, the sulfate-reducing and methanogenic zones overlap completely; that is, the usual sulfate-methane transition zone is absent. Amino acid racemization data show that the gassy sediments consist of younger carbonates than the low-gas sites. High concentrations of the reduced gases also occur in two ODP sites on the margin of the Bahamas platform, both of which have similar sedimentary conditions to those of the high-gas sites of Leg 182. Co-generation of these reduced gases results from an unusual combination of conditions, including: (1) a thick Quaternary sequence of iron-poor carbonate sediments, (2) a sub-seafloor brine, and (3) moderate amounts of organic carbon. The probable explanation for the co-generation of hydrogen sulfide and methane in all these sites, as well as in other reported environments, is that methanogens are utilizing non-competitive substrates to produce methane within the sulfate-reducing zone. Taken together, these results form the basis of a new model for sulfate reduction and methanogenesis in marine sediments. The biogeochemical end-members of the model are: (1) minimal sulfate reduction, (2) complete sulfate reduction followed by methanogenesis, and (3) overlapping sulfate reduction and methanogenesis with no transition zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Pliocene (2.6-3.5 Ma) age is determined from glacial sediments studied in a 20m long, 4 m deep trench excavated in Heidemann Valley, Vestfold Hills, East Antarctica. The age determination is based on a combined study of amino acid racemization, diatoms, foraminifera, and magnetic polarity, and supports earlier estimates of the age of the sedimentary section; all are beyond 14C range. Four till units are recognized and documented, and 16 subunits are identified. All are ascribed to deposition during a Late Pliocene glaciation that was probably the last time the entire Vestfold Hills was covered by an enlarged East Antarctic Ice Sheet (EAIS). Evidence for other more recent glacial events of the 'Vestfold Glaciation' may have been due to lateral expansion of the Sorsdal Glacier and limited expansion of the icesheet margin during the Last Glacial Maximum rather than a major expansion of the EAIS. The deposit appears to correlate with a marine deposition event recorded in Ocean Drilling Program Site 1166 in Prydz Bay, possibly with the Bardin Bluffs Formation of the Prince Charles Mountains and with part of the time represented in the ANDRILL AND-1B core in the Ross Sea.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter, we will report on the amino acids in the total acid hydrolysate of eight sediment samples from Leg 68 Site 502. This site was located on a topographic high at a depth of 3051 meters in the Colombian Basin of the western Caribbean Sea. Four holes were cored at the site by means of the hydraulic piston corer to a maximum sediment depth of 218 meters. The composite section is a virtually continuous, undisturbed sediment record covering almost 8 million years from the Holocene to late Miocene. Age estimates for the section are based on excellent magnetostratigraphic and biostratigraphic records. Four lithostratigraphic units (A, B, C, and D) were recognized, based on differences in color and content of clay, ash, foraminifers, and siliceous microfossils (Prell, Gardner, et al., 1980): A, yellowish brown to light brownish gray foraminifer-bearing (> 10%) nannofossil marl; B, gray to olive gray foraminifer-bearing nannofossil marl with occasional ash beds; C, light gray to dark greenish gray calcareous clay and foraminifer-bearing (< 10%) nannofossil marl; D, pale green to grayish green calcareous, ash-bearing clay with siliceous microfossils. The calcium carbonate content of these sediments increases from about 27 to about 49% from late Miocene to middle Pliocene (about 3.6 Ma) and remains uniform at about 48 to 50% from that time throughout the Quaternary. The eight sediment samples for amino acid analyses came from the third (502B) and fourth (502C) holes at Site 502. Samples ranged in sub-bottom depth from 4.3 to 225 meters spanning time from 0.3 to 7.7 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During IODP Expedition 310 (Tahiti Sea Level), drowned Pleistocene-Holocene barrier-reef terraces were drilled on the slope of the volcanic island. The deglacial reef succession typically consists of a coral framework encrusted by coralline algae and later by microbialites; the latter make up < 80% of the rock volume. Lipid biomarkers were analyzed in order to identify organisms involved in reef-microbialite formation at Tahiti, as the genesis of deglacial microbialites and the conditions favoring their formation are not fully understood. Sterols plus saturated and monounsaturated short-chain fatty acids predominantly derived from both marine primary producers (algae) and bacteria comprise 44 wt% of all lipids on average, whereas long-chain fatty acids and long-chain alcohols derived from higher land plants represent an average of only 24 wt%. Bacterially derived mono-O-alkyl glycerol ethers (MAGEs) and branched fatty acids (10-Me-C16:0; iso- and anteiso-C15:0 and -C17:0) are exceptionally abundant in the microbial carbonates (average, 19 wt%) and represent biomarkers of intermediate-to-high specificity for sulfate-reducing bacteria. Both are relatively enriched in 13C compared to eukaryotic lipids. No lipid biomarkers indicative of cyanobacteria were preserved in the microbialites. The abundances of Al, Si, Fe, Mn, Ba, pyroxene, plagioclase, and magnetite reflect strong terrigenous influx with Tahitian basalt as the major source. Chemical weathering of the basalt most likely elevated nutrient levels in the reefs and this fertilization led to an increase in primary production and organic matter formation, boosting heterotrophic sulfate reduction. Based on the observed biomarker patterns, sulfate-reducing bacteria were apparently involved in the formation of microbialites in the coral reefs off Tahiti during the last deglaciation.