67 resultados para Body-cell mass


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Marine invertebrates with open circulatory system establish low and constant oxygen partial pressure (Po2) around their tissues. We hypothesized that as a first step towards maintenance of low haemolymph and tissue oxygenation, the Po2 in molluscan mantle cavity water should be lowered against normoxic (21 kPa) seawater Po2, but balanced high enough to meet the energetic requirements in a given species. We recorded Po2 in mantle cavity water of five molluscan species with different lifestyles, two pectinids (Aequipecten opercularis, Pecten maximus), two mud clams (Arctica islandica, Mya arenaria), and a limpet (Patella vulgata). All species maintain mantle cavity water oxygenation below normoxic Po2. Average mantle cavity water Po2 correlates positively with standard metabolic rate (SMR): highest in scallops and lowest in mud clams. Scallops show typical Po2 frequency distribution, with peaks between 3 and 10 kPa, whereas mud clams and limpets maintain mantle water Po2 mostly <5 kPa. Only A. islandica and P. vulgata display distinguishable temporal patterns in Po2 time series. Adjustment of mantle cavity Po2 to lower than ambient levels through controlled pumping prevents high oxygen gradients between bivalve tissues and surrounding fluid, limiting oxygen flux across the body surface. The patterns of Po2 in mantle cavity water correspond to molluscan ecotypes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Grey seal, Halichoerus grypus, pups in the breeding colony at Froan, Norway, have a bimodal pattern of early aquatic behaviour. About 40% of the pups spend their time ashore to save energy, which can be allocated to growth or deposition of energy-rich adipose tissue. The other 60% of the pups enter the sea during suckling and the early postweaning period, and disperse to other locations within the breeding colony. Pups may swim distances up to 12 km. Neonatal aquatic dispersal behaviour may lead to increased energy expenditure for thermoregulation and swimming, and thus lead to a low rate of body mass gain during suckling and a high rate of body mass loss after weaning. Thus, we examined relationships between natal aquatic dispersal behaviour and change in body mass (DeltaBM) in suckling and weaned pups. Suckling pups that had dispersed >2000 m had a significantly lower DBM than suckling pups that dispersed <2000 m or that did not disperse. In weaned pups, there were no effects of aquatic dispersal behaviour on DBM. We suggest that the bimodal natal aquatic dispersal behaviour in grey seals at the study site reflects two different strategies for postweaning survival: to stay ashore and get fat, or to take a swim and acquire diving and feeding skills.